

Database Fragmentation with Encryption: Under Which Semantic Constraints and A Priori Knowledge Can Two Keep a Secret?

Joachim Biskup Marcel Preuß

Information Systems and Security (ISSI)

Technische Universität Dortmund, Germany

July 15, 2013

-Fragmentation with Encryption

Fragmentation with Encryption

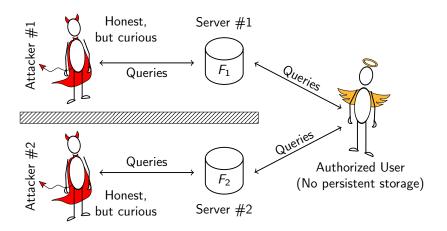
Context of Our Contribution

Goal of existing approach: Confidentiality by fragmentation

Achievements of this approach

- Formal framework of fragmentation with encryption
- Formal declaration of confidentiality requirements
- Efficient computation of fragmented instances
- Answering queries over fragmented databases

Open problems we solve


- No formal proof of "advanced confidentiality"
- Attacker's supposed a priori knowledge not considered

- Fragmentation with Encryption

An Approach to Fragmentation

to technische universität dortmund

Scenario for Working with a Fragmented Database

- Fragmentation with Encryption

An Approach to Fragmentation

Fragmentation with Encryption Compliant with Scenario

R	SSN	Name	Illness	HurtBy	Doctor
	1234	Hellmann	Borderline	Hellmann	White
	2345	Dooley	Laceration	McKinley	Warren
	3456	McKinley	Laceration	Dooley	Warren
	3456	McKinley	Concussion	Dooley	Warren

Split columns of rover fragments f_1 and f_2

Add Tuple-IDs to guarantee $f_1 \bowtie f_2 = r$

F_1	tid	SSN	Name	HurtBy	Doctor	F2	tid	SSN	HurtBy	Illness
	1	e_{S}^{1}	Hellmann	e_H^1	White		1	κ_{S}^{1}	κ_{H}^{1}	Borderline
	2	e_{s}^{2}	Dooley	e_H^2	Warren		2	κ^2_{S}	^к н	Laceration
	3	e_{S}^{3}	McKinley	e_H^3	Warren		3	κ_{S}^{3}	^к н	Laceration
	4	e 4	McKinley	e ⁴ _H	Warren		4	$\kappa_{S}^{\tilde{4}}$	κ_{H}^{4}	Concussion

"Cleartext attribute": Column in exactly one fragment "Encrypted attribute": Encrypted values in f_1 , crypto-keys in f_2 Fragmentation with Encryption

An Approach to Fragmentation

Hiding Sensitive Values and Associations

R	SSN	Name	Illness	HurtBy	Doctor
	1234	Hellmann	Borderline	Hellmann	White
	2345	Dooley	Laceration	McKinley	Warren
	3456	McKinley	Laceration	Dooley	Warren
	3456	McKinley	Concussion	Dooley	Warren

F_1	tid	SSN	Name	HurtBy	Doctor		F ₂	tid	SSN	HurtBy	Illness
	1	e_{S}^{1}	Hellmann	e_{H}^{1}	White	_		1	κ_{S}^{1}	κ^{1}_{H}	Borderline
	2	e_{s}^{2}	Dooley	e_{H}^{2}	Warren			2	κ^2_s	κ ² Η	Laceration
	3	e3	McKinley	e ³ H	Warren			3	$\kappa \tilde{s}$	κ ³ Η	Laceration
	4	e 4	McKinley	e ⁴ _H	Warren			4	$\kappa^{\bar{4}}_{S}$	⁴ кн	Concussion

fulfills set of confidentiality constraints

$$\mathcal{C} = \{ c_1 = \{\text{SSN}\}, c_3 = \{\text{Name}, \text{HurtBy}\}, c_2 = \{\text{Name}, \text{Illness}\}, c_4 = \{\text{Illness}, \text{HurtBy}\} \}$$

Inference-Proofness of Fragmentation

technische universität dortmund

Inference-Proofness under A Priori Knowledge

Notion of inference-proofness:

Rational attacker cannot deduce secret information from

- 1. Accessable data
- 2. His (supposed) a priori knowledge
- 3. His knowledge about the security mechanism

How to analyze inference-proofness?

- First-order logic modelling of attacker's knowledge
- Formal proof within logic-oriented modelling

Logic-Oriented View on Fragmentation

technische universität dortmund

Logic-Oriented Modelling of Fragmentation (1)

Suppose: Attacker knows

- 1. Tuples of outsourced fragment instance f_1
- 2. Schema $\langle R|A_R|SC_R \rangle$ of original instance r and Knowledge about the world in general
- 3. Process of fragmentation (algorithm) and Fragment schemas $\langle F_1 | A_{F_1} | SC_{F_1} \rangle$ and $\langle F_2 | A_{F_2} | SC_{F_2} \rangle$
- But: Attacker is curious about hidden original instance r (or hidden instance f_2 , respectively)

Logic-Oriented View on Fragmentation

technische universität dortmund

Logic-Oriented Modelling of Fragmentation (2)

Attacker can infer about r and f_2 :

- Cleartext columns of f_1 also valid for r
- ▶ Which columns of *r* and *f*₂ are hidden from him
 - Columns only stored in r and f_2
 - Encrypted columns of f_1 useless without keys from (hidden) f_2
- Impact of unique Tuple-IDs ...

This knowledge must be modelled as first-order logic sentences!

to technische universität dortmund

Logic-Oriented Modelling of Confidentiality Constraints

Confidentiality constraints as potential secrets

- Consider confidentiality constraint $c_i = \{a_{i_1}, \ldots, a_{i_\ell}\}$
- Protect all constant combinations possible for a_{i1},..., a_i
- ► Leads to first-order formula with free and ∃-quantified variables

Example:

$$c_2 = \{\texttt{Name}, \texttt{Illness}\}$$
 \downarrow

 $\Psi_2((X_N, X_I)) = (\exists X_S)(\exists X_H)(\exists X_D) \ R(X_S, X_N, X_I, X_H, X_D)$

The Impact of A Priori Knowledge: Survey

Until now: Attacker's a priori knowledge has been neglected

- ► Knowledge about semantic database constraints SC_R
- Knowledge about the world in general

Survey of the following results

- No inference-proofness under arbitrary a priori knowledge 4
- ► Inference-proofness under constrained a priori knowledge 🗸
- **Goal:** Algorithm to construct an inference-proof fragmentation Complying with attacker's a priori knowledge

Inference-Proofness of Fragmentation

LInference-Proofness under A Priori Knowledge

Harmful A Priori Knowledge: Example (1)

Attacker's view on r based on f_1 :

R	SSN	Name	Illness	HurtBy	Doctor
	?	Hellmann	?	?	White
	?	Dooley	?	?	Warren
	?	McKinley	?	?	Warren
	?	McKinley	?	?	Warren

Suppose attacker knows a priori:

"All patients of psychiatrist White suffer from Borderline."

As a first-order logic sentence:

 $(\forall X_S)(\forall X_N)(\forall X_I)(\forall X_H)[R(X_S, X_N, X_I, X_H, \texttt{White}) \Rightarrow (X_I \equiv \texttt{BLine})]$

Attacker's updated view on r violates $c_2 = \{Name, Illness\}$:

R	SSN	Name	Illness	HurtBy	Doctor
	?	Hellmann	Borderline	?	White

Inference-Proofness of Fragmentation

LInference-Proofness under A Priori Knowledge

Harmful A Priori Knowledge: Example (2)

Attacker's updated view on original instance r:

R	SSN	Name	Illness	HurtBy	Doctor
	?	Hellmann	Borderline	?	White
	?	Dooley	?	?	Warren
	?	McKinley	?	?	Warren
	?	McKinley	?	?	Warren

Suppose attacker knows a priori:

"All patients suffering from Borderline have hurt themselves."

As a first-order logic sentence:

 $(\forall X_S)(\forall X_N)(\forall X_H)(\forall X_D)[R(X_S, X_N, \text{BLine}, X_H, X_D) \Rightarrow (X_N \equiv X_H)]$

Attacker's updated view on r violates $c_3 = {\text{Name, HurtBy}}$:

R	SSN	Name	Illness	HurtBy	Doctor
	?	Hellmann	Borderline	Hellmann	White

Database Fragmentation with Encryption: Can Two Keep a Secret?
Inference-Proofness of Fragmentation
Inference-Proofness under A Priori Knowledge

About Harmful Information Flows

Attacker's updated view on r:

R	SSN	Name	Illness	HurtBy	Doctor
	?	Hellmann	Borderline	Hellmann	White

 $(\forall X_{\mathcal{S}})(\forall X_{\mathcal{N}})(\forall X_{\mathcal{I}})(\forall X_{\mathcal{H}}) [R(X_{\mathcal{S}}, X_{\mathcal{N}}, X_{\mathcal{I}}, X_{\mathcal{H}}, \texttt{White}) \Rightarrow (X_{\mathcal{I}} \equiv \texttt{BLine})]$

- ► Harmful constant flow: BLine (constant of formula) → Illness (hidden value)
- Exposed association: Name \leftrightarrow Illness

 $(\forall X_S)(\forall X_N)(\forall X_H)(\forall X_D) [R(X_S, X_N, \texttt{BLine}, X_H, X_D) \Rightarrow (X_N \equiv X_H)]$

Harmful equality flow:

Name (available value of f_1) \rightarrow HurtBy (hidden value)

► Exposed association: Name ↔ HurtBy

Inference-Proofness of Fragmentation

LInference-Proofness under A Priori Knowledge

Alternative Fragmentation of Example Instance

R	SSN	Name	Illness	HurtBy	Doctor
	1234	Hellmann	Borderline	Hellmann	White
	2345	Dooley	Laceration	McKinley	Warren
	3456	McKinley	Laceration	Dooley	Warren
	3456	McKinley	Concussion	Dooley	Warren

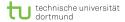
1	F1	tid	SSN	Illness	HurtBy	Doctor	F2	tid	SSN	HurtBy	Name
		1	e_{S}^{1}	Borderline	e_H^1	White		1	κ_{S}^{1}	κ_{H}^{1}	Hellmann
		2	e_{S}^{2}	Laceration	e_H^2	Warren		2	$\kappa^2_{\boldsymbol{S}}$	κ^2_H	Dooley
		3		Laceration	e _H ³	Warren		3	κ_{S}^{3}	^к н	McKinley
		4	e 4	Concussion	e ⁴ _H	Warren		4	κ 4 5	κ ⁴ Η	McKinley

fulfills set of confidentiality constraints

$$\mathcal{C} = \{ c_1 = \{\text{SSN}\}, c_3 = \{\text{Name}, \text{HurtBy}\}, c_2 = \{\text{Name}, \text{Illness}\}, c_4 = \{\text{Illness}, \text{HurtBy}\} \}$$

A Priori Knowledge under Alternative Fragmentation

Attacker's	view	on	r	based	on	<i>f</i> ₁ :	
------------	------	----	---	-------	----	-------------------------	--


R	SSN	Name	Illness	HurtBy	Doctor
	?	?	Borderline	?	White
	?	?	Laceration	?	Warren
	?	?	Laceration	?	Warren
	?	?	Concussion	?	Warren

Suppose attacker knows a priori:

1. $(\forall X_S)(\forall X_N)(\forall X_I)(\forall X_H) [R(X_S, X_N, X_I, X_H, \text{White}) \Rightarrow (X_I \equiv \text{BLine})]$ 2. $(\forall X_S)(\forall X_N)(\forall X_H)(\forall X_D) [R(X_S, X_N, \text{BLine}, X_H, X_D) \Rightarrow (X_N \equiv X_H)]$

A Priori Knowledge is harmless (though premises satisfied)

- 1. Association Doctor \leftrightarrow Illness already known from f_1
- 2. For neither X_N nor X_H a constant is known

Inference-Proofness from Attacker's Point of View

For each (instantiated) potential secret $\Psi(\mathbf{v})$: Existence of alternative instance r' over $\langle R|A_R|SC_R\rangle$ possible

- r' is indistinguishable from original instance r
 - ▶ r' and f_1 induce f'_2 s.t. r', f_1 and f'_2 form a fragmentation
 - r' must satisfy a priori knowledge
- r' does **not** satisfy $\Psi(\mathbf{v})$

Inference-Proofness under A Priori Knowledge

Construction of Alternative Instance r': Example

Attacker's view on r:

R	SSN	Name	Illness	HurtBy	Doctor
	1234	Hellmann	Borderline	Hellmann	White
	2345	Dooley	Laceration	McKinley	Warren
	3456	McKinley	Laceration	Dooley	Warren
	3456	McKinley	Concussion	Dooley	Warren

SSN, Name, HurtBy are modifiable

Can Hellmann \leftrightarrow Borderline be deduced? \rightarrow Possible alternative view on *r*:

	R	SSN	Name	Illness	HurtBy	Doctor
7777 Jones Laceration Miller Warren		9999	Smith	Borderline	Smith	White
		8888	Miller	Laceration	Jones	Warren
7777 Jones Concussion Miller Warren		7777	Jones	Laceration	Miller	Warren
TTTT Solles Concussion Willer Warren		7777	Jones	Concussion	Miller	Warren

Consistent with f_1 and with a priori knowledge

Sufficient Condition for Inference-Proofness

Suppose: A priori knowledge is set of first-order logic sentences From constrained class of implicational sentences

Theorem: A Fragmentation is inference-proof, if

- Partitioning of r into modifiable and non-modifiable columns
 - ▶ Each cleartext-column known from *f*₁ is non-modifiable
 - Modifiable columns: Subset of columns of f₂
 - Each confident. constraint overlaps with a modifiable column
- A priori knowledge: No information flow...
 - From constants of a priori knowledge to modifiable columns
 - $(\rightarrow$ Eliminates harmful constant flows)
 - Between modifiable and non-modifiable columns
 - $(\rightarrow$ Eliminates harmful equality flows)

Creation of Inference-Proof Fragmentation

About the Creation of Appropriate Fragmentations

Given input:

- Schema $\langle R|A_R|SC_R\rangle$ of original instance
- Set C of confidentiality constraints
- Attacker's a priori knowledge prior

Task: Create an inference-proof fragmentation

- Can be modelled as Binary Integer Linear Program
- Possible goal: Minimize number of "encrypted attributes"
- Wanted fragmentation exists, if solver outputs feasible solution

Conclusion and Future Work

Conclusion and Future Work

Our contribution:

- Extension of existing fragmentation approach by
 - Logic-oriented modelling
 - Attacker's a priori knowledge
- Within modelling: Formal proof of inference-proofness
- Method for computing inference-proof fragmentations

Possible future work:

- Extending feasible a priori knowledge
 - \rightarrow Sufficient & necessary condition
- Analysis not relying on perfect encryption algorithm