

On the Inference-Proofness of Database Fragmentation Satisfying Confidentiality Constraints

Joachim Biskup Marcel Preuß Lena Wiese

Information Systems and Security (ISSI)

Technische Universität Dortmund, Germany

October 28, 2011

technische universität dortmund

Table of Contents

Confidentiality by Fragmentation Motivation

An Approach to Fragmentation

Inference-Proofness of Fragmentation

How to Show Inference-Proofness Logic-Oriented View on Fragmentation Proving Inference-Proofness

Conclusion and Future Work

technische universität dortmund

Confidentiality by Fragmentation

Confidentiality by Fragmentation

- Confidentiality by Fragmentation

- Motivation

tu technische universität dortmund

Achieving Confidentiality by Breaking Associations

Today: Information is an important ressource \rightarrow Confidentiality of information is important

Often: Only associations between pieces of information sensitive

Example: Situation in a hospital

- List of illnesses cured \rightsquigarrow Not sensitive
- ► List of patients ~→ Not really sensitive
- Association: Patient and his illness \rightarrow Very sensitive

Goal: Confidentiality by breaking sensitive associations

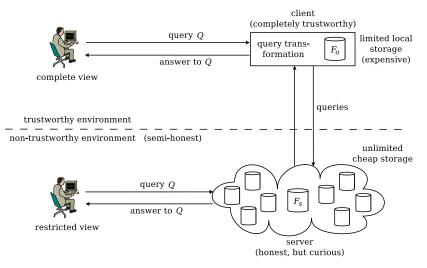
- Confidentiality by Fragmentation

Motivation

tu technische universität dortmund

Context of our contribution

Existing approach: Confidentiality by vertical fragmentation (by Samarati, Foresti, et al.)


- Formal framework of fragmentation
- Formal declaration of confidentiality requirements
- Efficient computation of fragmented instances
- Answering queries over fragmented databases
- No formal proof of inference-proofness

- Confidentiality by Fragmentation

An Approach to Fragmentation

technische universität dortmund

Scenario for Working with Fragmented Databases

Confidentiality by Fragmentation

An Approach to Fragmentation

Fragmentation Compliant with Scenario

Fragmentation of original instance r over schema $\langle R|A_R|SC_R\rangle$

- On schema level
 - Set of fragments $\mathcal{F} = \{ \langle F_o | A_{F_o} | SC_{F_o} \rangle, \langle F_s | A_{F_s} | SC_{F_s} \rangle \}$
 - $\langle F_i | A_{F_i} | SC_{F_i} \rangle$ is relational schema with $A_{F_i} \subseteq A_R$
 - Each attribute of A_R either in A_F, or A_F
- On instance level
 - Fragment instances f_o and f_s: Projections of r on A_{Fo} and A_{Fs}
 - Local storage of instance f_o
 - External storage of instance f_s
- Tuples belonging together have a unique Tuple-ID in common

-Confidentiality by Fragmentation

An Approach to Fragmentation

technische universität dortmund

Example: Instance containing sensitive associations

Patient	SSN	Name	DoB	ZIP	Illness	Doctor
	12345	Hellmann	03.01.1981	94142	Hypertension	White
	98765	Dooley	07.10.1953	94141	Obesity	Warren
	24689	McKinley	12.02.1952	94142	Hypertension	White
	13579	Ripley	03.01.1981	94139	Obesity	Warren

- Confidentiality by Fragmentation

An Approach to Fragmentation

technische universität dortmund

Example: Possible Fragmentation with Tuple-IDs

Fo (local)	tid	SSN	Name	DoB
	1	12345	Hellmann	03.01.1981
	2	98765	Dooley	07.10.1953
	3	24689	McKinley	12.02.1952
	4	13579	Ripley	03.01.1981
F _s (external)	tid	ZIP	Illness	Doctor
	1	94142	Hypertension	White
	2	94141	Obesity	Warren
	3	94142	Hypertension	White
	4	94139	Obesity	Warren

Confidentiality by Fragmentation

An Approach to Fragmentation

tu technische universität dortmund

Formal Declaration of Confidentiality Requirements

How to declare confidentiality requirements formally?

Confidentiality Constraint *c* over $\langle R | A_R | SC_R \rangle$: Attributes $c \subseteq A_R$

Correctness of $\mathcal{F} = \{ \langle F_o | A_{F_o} | SC_{F_o} \rangle, \langle F_s | A_{F_s} | SC_{F_s} \rangle \}$

- Let C be a set of Confidentiality Constraints
- ▶ \mathcal{F} correct w.r.t. $\mathcal{C} \iff c \nsubseteq A_{F_s}$ holds for all $c \in \mathcal{C}$

-Confidentiality by Fragmentation

An Approach to Fragmentation

technische universität dortmund

Example: Correct Fragmentation

Fo (local)	tid	SSN	Name	DoB
	1	12345	Hellmann	03.01.1981
	2	98765	Dooley	07.10.1953
	3	24689	McKinley	12.02.1952
	4	13579	Ripley	03.01.1981
				•
F _s (external)	tid	ZIP	Illness	Doctor
	1	94142	Hypertension	White
	2	94141	Obesity	Warren
	3	94142	Hypertension	White

is correct w.r.t.

technische universität dortmund

Inference-Proofness of Fragmentation

Joachim Biskup, Marcel Preuß, Lena Wiese

Inference-Proofness of Fragmentation

How to Show Inference-Proofness

technische universität

Approach to Show Inference-Proofness

How to analyse inference-proofness?

- Controlled Query Evaluation (CQE) is known to be inference-proof
- Logic-oriented modelling of fragmentation within CQE-Framework from the point of view of an attacker
- Formal proof within logic-oriented framework

Inference-Proofness of Fragmentation

Logic-Oriented View on Fragmentation

Modelling the Positive Knowledge of f_s

Suppose: Attacker knows

- Outsourced fragment instance fs
- Fragment $\langle F_s | A_{F_s} | SC_{F_s} \rangle$ with $A_{F_s} = \{a_{tid}, a_1, \dots, a_k\}$

Explicit positive knowlegde from attacker's point of view

$$\{F_{s}(\nu[a_{\texttt{tid}}],\nu[a_{1}],\ldots,\nu[a_{k}]) \mid \nu \in f_{s}\}$$

Inference-Proofness of Fragmentation

Logic-Oriented View on Fragmentation

Example of Modelling the Positive Knowledge of f_s

F _s	<u>tid</u>	ZIP	Illness	Doctor
	1	94142	Hypertension	White
	2	94141	Obesity	Warren
	3	94142	Hypertension	White
	4	94139	Obesity	Warren

Inference-Proofness of Fragmentation

Logic-Oriented View on Fragmentation

Negative Knowledge Resulting from Completeness

Problem: An attacker knows even more about f_s

- Instances supposed to be complete
- ► By CWA: Every constant combination not in f_s is invalid → Knowledge of the kind ¬F_s (v_{tid}, v₁,..., v_k)
- Problem: Infinite set of constant symbols
- Express negative knowledge by Completeness Sentence

Inference-Proofness of Fragmentation

Logic-Oriented View on Fragmentation

tu technische universität dortmund

The Knowledge About the Hidden Instance r

Suppose: Attacker knows the process of fragmentation including

- Outsourced fragment instance f_s over $\langle F_s | A_{F_s} | SC_{F_s} \rangle$
- Schema $\langle R|A_R|SC_R\rangle$ over which original instance r is built

Knowledge resulting from relationship between f_s and r

- ► For each $\nu \in f_s$: Tuple $\mu \in r$ with $\mu \lceil (A_R \cap A_{F_s}) = \nu \lceil (A_R \cap A_{F_s})$ exists
- ► For each $\nu \notin f_s$: No tuple $\mu \in r$ with $\mu \lceil (A_R \cap A_{F_s}) = \nu \lceil (A_R \cap A_{F_s}) \rceil$

This knowledge must be expressed as a logic formula!

Inference-Proofness of Fragmentation

Logic-Oriented View on Fragmentation

Confidentiality Constraints in the CQE-Framework

Confidentiality constraints modelled as potential secrets

- Potential secret Ψ in CQE-framework:
 - Ψ is a logic sentence
 - If Ψ is true in instance: User must *not* get to know this
 - \blacktriangleright Otherwise: User may know that \varPsi is false in instance
- Consider confidentiality constraint $c_i = \{a_{i_1}, \ldots, a_{i_\ell}\}$
- Protect all constant combinations possible for a_{i1},..., a_i

Results in: $\Psi_i = (\exists X_{i_{\ell+1}}) \dots (\exists X_{i_n}) R(X_1, \dots, X_n)$

Inference-Proofness of Fragmentation

technische universität dortmund

About A-Priori Knowledge

Preliminary result:

- Logic-oriented view on fragmentation
- Attacker's a priori knowledge neglected so far
- But: A priori knowledge of crucial importance
 - No inference-proofness under general a priori knowledge
 - ► Here: Inference-proofness under EGDs/TGDs which are
 - Unirelational
 - Typed
 - Without Constants

Inference-Proofness of Fragmentation

Proving Inference-Proofness

About Unirelational Typed EGDs/TGDs

Considered: Semantic constraints SC_R of $\langle R|A_R|SC_R\rangle$

- ► Equality Generating Dependencies (EGDs) (e.g., FDs)
 - Presence of some tuples in r implies: Certain components of these tuples are equal
- ► Tuple Generating Dependencies (TGDs) (e.g., JDs, INDs)
 - Presence of some tuples in r implies: Presence of certain other tuples in r
- Typed: Assignment of variables to column positions

Inference-Proofness of Fragmentation

Proving Inference-Proofness

tu technische universität dortmund

Ψ

Main result: Inference-Proofness

To be shown: For each potential secret \varPsi

Knowledge about outsourced instance f_s Knowledge about hidden instance rA priori knowledge: Unirel. typed EGDs/TGDs $\not\models$

Sketch of proof:

- 1. Choose any potential secret $ilde{\Psi}$
- 2. Construct an interpretation \mathcal{I}^* with
 - $\mathcal{I}^* \models_M$ Knowledge about outsourced instance f_s
 - $\mathcal{I}^* \models_M$ Knowledge about hidden instance r
 - ▶ $\mathcal{I}^* \models_M A$ priori knowledge: Unirel. typed EGDs/TGDs
 - $\blacktriangleright \mathcal{I}^* \not\models_M \tilde{\Psi}$

technische universität dortmund

Conclusion and Future Work

technische universität dortmund

Conclusion and Future Work

What has been achieved?

- Existing approach to confidentiality by fragmentation is
 - Modelled logic-orientedly in CQE-framework
 - Extended by attacker's a priori knowledge
- Within modelling: Formal proof of inference-proofness

What might be done in future?

- Extending feasible a priori knowledge
- Analysing other approaches to confidentiality by fragmentation
- Hybrid fragmentation: Vertical + Horizontal

technische universität dortmund

That's all...

Thank you for your attention!