

On the Inference-Proofness of Database Fragmentation Satisfying Confidentiality Constraints

Marcel Preuß

Chair VI (ISSI), Computer Science

Technische Universität Dortmund

March 31, 2011

technische universität dortmund

Table of Contents

Confidentiality by Fragmentation

Keynote on Fragmentation An Approach to Fragmentation

Inference-Proofness of Fragmentation

How to Proceed for Showing Inference-Proofness About the Logic Underlying the Framework Logic-Oriented View on Fragmentation Showing the Inference-Proofness

technische universität dortmund

Confidentiality by Fragmentation

Confidentiality by Fragmentation

- Confidentiality by Fragmentation

Keynote on Fragmentation

tu technische universität dortmund

Information as a Ressource

Today: Information is an important ressource \rightarrow Confidentiality of information is important

Economy-Driven society: Cost-efficiency of importance \rightarrow Outsourcing: "Database as a service"-Paradigm

Goal conflict: Confidentiality ++++ Outsourcing

-Confidentiality by Fragmentation

└─Keynote on Fragmentation

Approaches to Achieving Confidentiality

Confidentiality by encryption on user-side? \rightarrow Efficient handling of queries on server-side difficult

Often: Only associations between pieces of information sensitive

Example: Situation in a hospital

- ► List of illnesses cured ~→ Not sensitive
- ► List of patients ~→ Not really sensitive
- Association: Patient and his illness \rightarrow Very sensitive

-Confidentiality by Fragmentation

└─Keynote on Fragmentation

U technische universität dortmund

Confidentiality by Fragmentation: Example (1)

Patient	SSN	Name	DoB	ZIP	Illness	Doctor
	12345	Hellmann	03.01.1981	94142	Hypertension	White
	98765	Dooley	07.10.1953	94141	Obesity	Warren
	24689	McKinley	12.02.1952	94142	Hypertension	White
	13579	Ripley	03.01.1981	94139	Obesity	Warren

Figure: Instance patient over schema Patient

Noticeable

- Attribute SSN is a primary key
- Sensitive associations are contained

Confidentiality by Fragmentation

Keynote on Fragmentation

U technische universität dortmund

Confidentiality by Fragmentation: Example (2)

F1	Name	F ₂	DoB	ZIP	F ₃	Illness	Doctor
	Hellmann		03.01.1981	94142		Hypertension	White
	Dooley		07.10.1953	94141		Obesity	Warren
	McKinley		12.02.1952	94142			
	Ripley		03.01.1981	94139			

Figure: Possible fragment instances of patient

Noticeable

- Primary key SSN not in any fragment
- Sensitive associations broken

- Confidentiality by Fragmentation

-An Approach to Fragmentation

technische universität dortmund

Towards an Approach to Fragmentation

Assumptions: Underlying client-server framework

- Server is honest, but curious
- Client is completely trustworthy
- Client has (limited) local storage
- ► Local storage more expensive than external storage → Target: Use external storage for as much data as possible

- Confidentiality by Fragmentation

An Approach to Fragmentation

technische universität dortmund

Working with Fragmented Databases

Confidentiality by Fragmentation

An Approach to Fragmentation

to technische universität dortmund

Fragmentation Compliant with Assumptions

Fragmentation of instance *r* over schema $\langle R | A_R | SC_R \rangle$

Fragmentation on schema level

- Set of Fragments $\mathcal{F} = \{ \langle F_o | A_{F_o} | SC_{F_o} \rangle, \langle F_s | A_{F_s} | SC_{F_s} \rangle \}$
- $\langle F_i | A_{F_i} | SC_{F_i} \rangle$ is a relational schema with $A_{F_i} \subseteq A_R$
- Each attribute of A_R is contained in exactly one fragment
- Fragmentation on instance level
 - Fragment instances f_o and f_s : Projections of r on A_{F_o} and A_{F_s}
 - Local storage of instance $f_o \quad (\rightarrow \text{Owner})$
 - External storage of instance f_s (\rightarrow Server)

Confidentiality by Fragmentation

An Approach to Fragmentation

Example of a Possible Fragmentation

Fo	SSN	Name	DoB
	12345	Hellmann	03.01.1981
	98765	Dooley	07.10.1953
	24689	McKinley	12.02.1952
	13579	Ripley	03.01.1981
Fs	ZIP	Illness	Doctor
Fs	ZIP 94142	Illness Hypertension	Doctor White
Fs	ZIP 94142 94141	Illness Hypertension Obesity	Doctor White Warren
Fs	ZIP 94142 94141	Illness Hypertension Obesity	Doctor White Warren

Figure: Possible fragmentation of patient

Confidentiality by Fragmentation

-An Approach to Fragmentation

tu technische universität dortmund

Considering Reconstructability

Problem: Reconstructability of r not guaranteed

Idea: Usage of Tuple-Identifiers (T-IDs)

- ▶ Add attribute tid $\notin A_R$ to both A_{F_o} and A_{F_s} as a primary key
- ▶ In both *f_o* and *f_s*:
 - Tuples belonging together have a unique T-ID in common
 - Consequence: Duplicates regarding A_{Fi} \ {tid} are kept

Confidentiality by Fragmentation

-An Approach to Fragmentation

U technische universität dortmund

Example of a Possible Fragmentation with T-IDs

Fo	tid	SSN	Name	DoB
	1	12345	Hellmann	03.01.1981
	2	98765	Dooley	07.10.1953
	3	24689	McKinley	12.02.1952
	4	13579	Ripley	03.01.1981
F _s	tid	ZIP	Illness	Doctor
	1	94142	Hypertension	White
	1 2	94142 94141	Hypertension Obesity	White Warren
	1 2 3	94142 94141 94142	Hypertension Obesity Hypertension	White Warren White

Figure: Possible fragmentation of *patient* with T-IDs

Confidentiality by Fragmentation

An Approach to Fragmentation

tu technische universität dortmund

Formal Declaration of Confidentiality Requirements

How to declare confidentiality requirements formally?

Confidentiality Constraint c over $\langle R|A_R|SC_R\rangle$ is a subset $c \subseteq A_R$

Correctness of $\mathcal{F} = \{ \langle F_o | A_{F_o} | SC_{F_o} \rangle, \langle F_s | A_{F_s} | SC_{F_s} \rangle \}$:

- ▶ Let C be a set of Confidentiality Constraints
- ▶ \mathcal{F} is correct w.r.t. $\mathcal{C} \iff c \nsubseteq A_{F_s}$ holds for all $c \in \mathcal{C}$

Confidentiality by Fragmentation

An Approach to Fragmentation

Example: Set of Confidentiality Constraints

 $\begin{array}{l} c_0 = \{\text{SSN}\}\\ c_1 = \{\text{Name, DoB}\}\\ c_2 = \{\text{Name, ZIP}\}\\ c_3 = \{\text{Name, Illness}\}\\ c_4 = \{\text{Name, Doctor}\}\\ c_5 = \{\text{DoB, ZIP, Illness}\}\\ c_6 = \{\text{DoB, ZIP, Doctor}\} \end{array}$

Figure: Set C of Confidentiality Constraints over Patient

Confidentiality by Fragmentation

An Approach to Fragmentation

Example: Correct Fragmentation

F.	tid	SSN	Name	DoB
	1	12345	Hellmann	03.01.1981
	2	98765	Dooley	07.10.1953
	3	24689	McKinley	12.02.1952
	4	13579	Ripley	03.01.1981
F _s	tid	ZIP	Illness	Doctor
	1	94142	Hypertension	White
	2	94141	Obesity	Warren
	3	94142	Hypertension	White
	4	94139	Obesity	Warren

Figure: Fragmentation of *patient*, correct w.r.t. C

technische universität dortmund

Inference-Proofness of Fragmentation

Inference-Proofness of Fragmentation

How to Proceed for Showing Inference-Proofness

Approach to Show Inference-Proofness

How to succeed in analysing inference-proofness?

- CQE is known to be inference-proof
- Modelling of fragmentation within the CQE-Framework
 - Choice of an appropriate logic
 - Modelling of f_s , r and their relationship
 - Modelling of confidentiality constraints
- Formal proof within logic-oriented framework
 - Assumptions about an attacker's reasoning abilites
 - Assumptions about an attacker's a priori knowlegde

Inference-Proofness of Fragmentation

About the Logic Underlying the Framework

Choice of an Appropriate Logic: Syntax

Syntax of the logic (ightarrow Language \mathscr{L})

- 1st-order logic with equality
 - Predicate symbol R with arity n
 - Predicate symbol F_s with arity k
 - Distinguished binary predicate symbol =
 - Fixed infinite domain *Dom*
 - \rightarrow Constant symbols declared for the relational schema
 - Infinite set of variables $Var := \{X_1, X_2, \ldots\}$
- Only constants or variables as terms of atomic formulas
- ▶ Only closed formulas \rightarrow All variables are quantified (\forall , \exists)

Inference-Proofness of Fragmentation

About the Logic Underlying the Framework

Choice of an Appropriate Logic: Semantics

An interpretation $\mathcal I$ for $\mathscr L$ is a DB-Interpretation \Leftrightarrow

- Universe $\mathcal{U} = \text{Domain } Dom$
- $\mathcal{I}(v) = v$ holds for all $v \in Dom$
- *R* is interpreted by a finite set $\mathcal{I}(R) \subset \mathcal{U}^n$
- F_s is interpreted by a finite set $\mathcal{I}(F_s) \subset \mathcal{U}^k$
- ▶ For predicate symbol = holds: $\mathcal{I}(=) = \{ (v, v) \mid v \in \mathcal{U} \}$

Inference-Proofness of Fragmentation

About the Logic Underlying the Framework

Implication Based on DB-Interpretation

Notion of Satisfaction

- \blacktriangleright Consider a DB-Interpretation ${\cal I}$
- Set of formulas $\mathcal{S} \subset \mathscr{L}$
- \mathcal{I} satisfies \mathcal{S} is written as $\mathcal{I} \models_M \mathcal{S}$

Semantics of satisfaction: The same as in usual first-order logic

 $\mathcal{S} \subset \mathscr{L}$ implies $\Phi \in \mathscr{L}$ (written $\mathcal{S} \models_{DB} \Phi$) iff For each DB-Interpretation \mathcal{I} with $\mathcal{I} \models_M \mathcal{S}$ also $\mathcal{I} \models_M \Phi$ holds

Inference-Proofness of Fragmentation

Logic-Oriented View on Fragmentation

Convention from now on

Figure: Convention (w.l.o.g.): Rearrangement of columns of r

Inference-Proofness of Fragmentation

Logic-Oriented View on Fragmentation

Modelling the Positive Knowledge of f_s

An attacker knows about the visible fragment

- Outsourced fragment instance fs
- Fragment $\langle F_s | A_{F_s} | SC_{F_s} \rangle$ with $A_{F_s} = \{a_{tid}, a_1, \dots, a_k\}$

Explicit positive knowlegde of f_s from an attacker's point of view

- $\blacktriangleright db_{f_s}^+ := \{F_s(\nu[a_{\texttt{tid}}], \nu[a_1], \ldots, \nu[a_k]) \mid \nu \in f_s\}$
- ▶ Functional dependency $a_{\texttt{tid}} \rightarrow \{a_1, \ldots, a_k\} \in SC_{F_s}$

Inference-Proofness of Fragmentation

Logic-Oriented View on Fragmentation

Example of Modelling the Positive Knowledge of f_s

F _s	<u>tid</u>	ZIP	Illness	Doctor
	1	94142	Hypertension	White
	2	94141	Obesity	Warren
	3	94142	Hypertension	White
	4	94139	Obesity	Warren

Inference-Proofness of Fragmentation

Logic-Oriented View on Fragmentation

Negative Knowledge Resulting from Completeness

Problem: An attacker knows even more about f_s

- Instances r and f_s are supposed to be complete
- ► Every constant combination not in f_s is invalid in f_s by CWA → Knowledge of the kind ¬F_s (v_{tid}, v₁,..., v_n)
- Problem: Infinite Domain \rightarrow Not explicitly enumerable
- Bright idea: Use Completeness-Sentence to model CWA

Inference-Proofness of Fragmentation

Logic-Oriented View on Fragmentation

Modelling the Negative Knowledge of f_s

CWA in terms of the running example:

CWA as a Completeness Sentence in $db_{f_e}^-$:

$$(\forall X_{\texttt{tid}}) \dots (\forall X_k) \left[\bigvee_{\nu \in f_s} \left(\bigwedge_{a_j \in A_{F_s}} (X_j = \nu[a_j]) \right) \vee \neg F_s(X_{\texttt{tid}}, X_1, \dots, X_k) \right]$$

Inference-Proofness of Fragmentation

Logic-Oriented View on Fragmentation

Final Logic-Oriented view on f_s

Summing up: A logic-oriented view on f_s is modelled by

$$db_{f_s} := db_{f_s}^+ \cup db_{f_s}^- \cup \{a_{\texttt{tid}} \rightarrow \{a_1, \dots, a_k\}\}$$

But: An attacker is interested in knowing the original instance r

Inference-Proofness of Fragmentation

Logic-Oriented View on Fragmentation

The Knowledge Known About r(1)

Suppose: Attacker knows the process of fragmentation including

- Fragment instance f_s over $\langle F_s | A_{F_s} | SC_{F_s} \rangle$
- Schema $\langle R|A_R|SC_R\rangle$ over which r is built

Knowledge resulting from relationship between f_s and r

- ▶ For each $\nu \in f_s$: A tuple $\mu \in r$ with $\mu \lceil A_{F_s} = \nu \lceil A_R$ exists
- ▶ For each $\nu \notin f_s$: No tuple $\mu \in r$ with $\mu \lceil A_{F_s} = \nu \lceil A_R$

Knowledge expressed as a formula of *db_r*:

$$(\forall X_1) \dots (\forall X_k) [(\exists X_{tid}) F_s(X_{tid}, X_1, \dots, X_k) \Leftrightarrow \\ (\exists X_{k+1}) \dots (\exists X_n) R(X_1, \dots, X_k, X_{k+1}, \dots, X_n)]$$

Inference-Proofness of Fragmentation

Logic-Oriented View on Fragmentation

The Knowledge Known About r (2)

Knowledge resulting from unique T-IDs contained in f_s

- Duplicates of tuples regarding $A_{F_s} \cap A_R$ are kept
- But: Corresponding tuples in r cannot be equal

Knowledge expressed as a formula of *db_r*:

$$(\forall X_1) \dots (\forall X_k) [(\exists X_{tid}) (\exists X'_{tid}) [F_s(X_{tid}, X_1, \dots, X_k) \land F_s(X'_{tid}, X_1, \dots, X_k) \land (X_{tid} \neq X'_{tid})] \Rightarrow$$

$$(\exists X_{k+1}) \dots (\exists X_n) (\exists X'_{k+1}) \dots (\exists X'_n) [R(X_1, \dots, X_k, X_{k+1}, \dots, X_n) \land R(X_1, \dots, X_k, X'_{k+1}, \dots, X'_n) \land \bigvee_{j=k+1}^n (X_j \neq X'_j)]]$$

Inference-Proofness of Fragmentation

Logic-Oriented View on Fragmentation

Confidentiality Constraints in the CQE-Framework

Design choice: Confidentiality constraints as potential secrets

- Supposition: Only those values or associations recorded in r are protected by confidentiality constraints
- About a potential secret $\Psi \in \mathscr{L}$ defined for a user:
 - If Ψ is true in instance: User must *not* get to know this
 - \blacktriangleright Otherwise: User may know that \varPsi is false in instance
- Assume: An attacker is aware of C

Inference-Proofness of Fragmentation

Logic-Oriented View on Fragmentation

Bridging the Differences

From attribute-level to value-level

- Consider a confidentiality constraint $c_i = \{a_{i_1}, \ldots, a_{i_\ell}\}$
- ▶ Protect all constant combinations possible for a_{i1},..., a_{iℓ}
 → One potential secret per possible combination
- ▶ Otherwise: Attacker can read secrets directly from *pot_sec*(C)
- But: Leads to an infinite number of formulas as $|Dom| = \infty$
- ▶ Idea: Upgrade $\mathscr{L} \to \mathscr{L}^f \supset \mathscr{L}$ containing free variables
- Use free variables $X_{i_1}, \ldots, X_{i_\ell}$ to represent a_{i_1}, \ldots, a_{i_k}

Inference-Proofness of Fragmentation

Logic-Oriented View on Fragmentation

Modelling of Confidentiality Constraints

Consider a confidentiality constraint $c_i = \{a_{i_1}, \ldots, a_{i_\ell}\} \in C$

$$\blacktriangleright \operatorname{Ind}_{c_i}^+ = \{i_1, \ldots, i_\ell\}$$

► $Ind_{c_i}^- = \{1, ..., n\} \setminus \{i_1, ..., i_\ell\} = \{i_{\ell+1}, ..., i_n\}$

Construction of $pot_sec(C)$:

▶ For all $c_i \in C$: Add the potential secret

$$\Psi_i(\boldsymbol{X}_i) = (\exists X_{i_{\ell+1}}) \dots (\exists X_{i_n}) R(X_1, \dots, X_n)$$

• Thereby, for $j \in \{1, \ldots, n\}$:

- If $j \in \operatorname{Ind}_{c_i}^+$: X_j is a free variable
- If $j \in \operatorname{Ind}_{c_i}^-$: X_j is a quantified variable

•
$$X_i = (X_{i_1}, \ldots, X_{i_\ell})$$
 is the vector of free variables

Inference-Proofness of Fragmentation

Logic-Oriented View on Fragmentation

to technische universität dortmund

Expansion of the Confidentiality Policy

Given:
$$\Psi_i(\boldsymbol{X_i})$$
 with $\boldsymbol{X_i} = (X_{i_1}, \dots, X_{i_\ell})$

Problem: Semantics for ${\mathscr L}$ does not comprise free variables

Solution: Construction of Expansion $ex(\Psi_i(X_i)) \subset \mathscr{L}$

- Consider each constant combination $v_i = (v_{i_1}, \ldots, v_{i_\ell})$
- Construct each formula $\Psi_i(\mathbf{v_i}) \in ex(\Psi_i(\mathbf{X_i}))$

Expansion of $pot_sec(C)$:

$$\exp(pot_sec(\mathcal{C})) := \bigcup_{\Psi(\boldsymbol{X}) \in pot_sec(\mathcal{C})} \exp(\Psi(\boldsymbol{X}))$$

Inference-Proofness of Fragmentation

└-Showing the Inference-Proofness

About A-Priori Knowledge

Known now

- Logic-oriented view on fragmentation
- Until now: An attacker's a priori knowledge is neglected

Prior work: A priori knowledge of crucial importance

- Fragmentation already known to be inference-proof, if
 - No a priori knowledge
 - A priori knowledge in terms of functional dependencies
- Not inference-proof under general a priori knowledge

Now: Inference-proofness under unirelational typed EGDs/TGDs

Inference-Proofness of Fragmentation

└-Showing the Inference-Proofness

About Unirelational EGDs/TGDs

Considered: Semantic constraints SC_R of $\langle R|A_R|SC_R\rangle$

Nearly all semantic constraints can be characterized as

- Equality Generating Dependencies (EGDs) (e.g. FDs)
- ► Tuple Generating Dependencies (TGDs) (e.g. JDs, INDs)

Unirelational EGD/TGD: $(\forall \mathbf{X}) [\alpha(\mathbf{X}) \Rightarrow (\exists \mathbf{Y}) \beta(\mathbf{X}, \mathbf{Y})]$ with

- α is a conjunction of atoms $R(\ldots)$ over variables of X
- ▶ β is a conjunction of atoms R(...) and (... = ...) over X, Y
- All variables of $oldsymbol{X}$ appear in lpha
- All terms are variables $(\rightarrow \text{No constants allowed!})$

Inference-Proofness of Fragmentation

Showing the Inference-Proofness

tu technische universität dortmund

About Typed Constraints

Typed EGD/TGD: Var can be partitioned into n disjoint classes:

- For each atom $R(X_1, \ldots, X_n)$: X_i in class i
- For each atom (X' = X''): X' and X'' belong to the same class

Examples of (un)typed EGDs/TGDs

- $\blacktriangleright (\forall \boldsymbol{X}) [R(\boldsymbol{X}_1, \boldsymbol{X}_2, \boldsymbol{X}_1, \ldots) \Rightarrow R(\ldots)]$
- $\blacktriangleright (\forall \mathbf{X}) [R(\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_3, \ldots) \Rightarrow (\mathbf{X}_1 = \mathbf{X}_2)]$
- $(\forall \mathbf{X}) [R(X_1, X_2, \mathbf{X}_3, \ldots) \land R(X_1, \mathbf{X}_3, X'_2 \ldots) \Rightarrow R(\ldots)]$
- $(\forall \boldsymbol{X}) [R(X_1, X_2, X_3, \ldots) \land R(X_1, X_2', X_3', \ldots) \Rightarrow (X_3 = X_3')]$
- $\blacktriangleright (\forall \boldsymbol{X}) [R(X_1, X_2, X_3, \ldots) \land R(X'_1, X'_2, X_3, \ldots) \Rightarrow R(X_1, X'_2, \ldots)]$

Inference-Proofness of Fragmentation

Showing the Inference-Proofness

Summary of Views on Fragmentation

Relational Level	Logic-Oriented Level
Instance <i>r</i> over $\langle R A_R SC_R\rangle$	Set of formulas <i>db</i> _r
Confidentiality Constraints ${\mathcal C}$	Confident. Policy $pot_sec(C)$
Fragm. ${\cal F}$, correct w.r.t. ${\cal C}$	Implicitly in <i>db</i> _r
f_{s} over $\langle \mathcal{F}_{s} \mathcal{A}_{\mathcal{F}_{s}} \mathcal{SC}_{\mathcal{F}_{s}} angle \in \mathcal{F}$	Set of formulas <i>db_{fs}</i>
EGDs/TGDs in <i>SC_R</i>	A-Priori Knowledge <i>prior_{SCR}</i>

On the Inference-Proofness of Database Fragmentation Satisfying Confidentiality Constraints
Inference-Proofness of Fragmentation
Showing the Inference-Proofness
technische universität dortmund

Sketch of Proof

To be shown: for all $\Psi(\mathbf{v}) \in ex(pot_sec(\mathcal{C}))$: $db_{f_s} \cup db_r \cup prior_{SC_R} \not\models_{DB} \Psi(\mathbf{v})$

Steps of proof:

- 1. Choose $ilde{\Psi}(\mathbf{v}) \in \mathsf{ex}(\mathit{pot_sec}(\mathcal{C}))$ arbitrarily
- 2. Show: There is a DB-Interpretation \mathcal{I}^{\ast} with

$$\mathcal{I}^* \models_M db_{f_s}$$

$$\mathcal{I}^* \models_M db_r$$

$$\mathcal{I}^* \models_M prior_{SC_R}$$

$$\mathcal{I}^* \not\models_M \tilde{\Psi}(\mathbf{v})$$

Inference-Proofness of Fragmentation

└-Showing the Inference-Proofness

to technische universität dortmund

Proof of Correctness (1)

About the structure of correct fragmentations

- ▶ Consider: $\tilde{\Psi}(\mathbf{v}) \in \exp(pot_sec(\mathcal{C}))$ with $\mathbf{v} = (v_{i_1}, \dots, v_{i_\ell})$
- ▶ Hence: $\tilde{\Psi}(\boldsymbol{X}) \in pot_sec(\mathcal{C})$ with $\boldsymbol{X} = (X_{i_1}, \dots, X_{i_\ell})$
- Moreover: $c = \{a_{i_1}, \ldots, a_{i_\ell}\} \in \mathcal{C}$
- Fragmentation \mathcal{F} is correct w.r.t. \mathcal{C}
 - Accordingly: $c = \{a_{i_1}, \ldots, a_{i_\ell}\} \not\subseteq A_{F_s}$
 - ▶ Reformulated: There is $m \in \{i_1, ..., i_\ell\}$ s.t. $a_m \notin A_{F_s}$
- ▶ Hence: $m \notin \{1, ..., k\}$ and $m \in \{k + 1, ..., n\}$

Inference-Proofness of Fragmentation

Showing the Inference-Proofness

tu technische universität dortmund

Proof of Correctness (1) – Visually Revisited

Interence-1 roomess of ragmentation

└-Showing the Inference-Proofness

Proof of Correctness (2)

First part of construction of \mathcal{I}^* :

$$\mathcal{I}^*(F_s) := \{ \left(\nu[a_{\texttt{tid}}], \nu[a_1], \dots, \nu[a_k] \right) \mid \nu \in f_s \}$$

Obviously $\mathcal{I}^* \models_M db_{f_s}$ because of

$$\mathcal{I}^* \models_M db^+_{f_s}$$

$$\mathcal{I}^* \models_M db^-_{f_s}$$

$$\mathcal{I}^* \models_M (a_{\text{tid}} \rightarrow \{a_1, \dots, a_k\})$$

└-Showing the Inference-Proofness

technische universität dortmund

Proof of Correctness (3)

Continuing the construction of \mathcal{I}^* :

$$\mathcal{I}^*(R) := \{ (\mu[a_1], \ldots, \varphi_m(\mu[a_m]), \ldots, \mu[a_n]) \mid \mu \in r \}$$

 φ_m : $\mathcal{U}_m
ightarrow \mathcal{U} \setminus \{v_m\}$ is an **injective** function with

- $\blacktriangleright \mathcal{U}_m := \{ \mu[a_m] \mid \mu \in r \}$
- \mathcal{U} is the infinite universe of \mathcal{I}^*
- v_m is a value of $oldsymbol{v} = (v_{i_1}, \ldots, v_{i_\ell})$

 φ_m can always be constructed because of $||\mathcal{U} \setminus \{v_m\}|| > ||\mathcal{U}_m||$

Inference-Proofness of Fragmentation

Showing the Inference-Proofness

Proof of Correctness (4)

First part of proving $\mathcal{I}^* \models_M db_r$: Show that \mathcal{I}^* satisfies

$$(\forall X_1) \dots (\forall X_k) [(\exists X_{tid}) F_s(X_{tid}, X_1, \dots, X_k) \Leftrightarrow (\exists X_{k+1}) \dots (\exists X_n) R(X_1, \dots, X_k, X_{k+1}, \dots, X_n)]$$

To prove the if-part, assume:

 $\mathcal{I}^* \models_M (\exists X_{\texttt{tid}}) F_s(X_{\texttt{tid}}, X_1, \dots, X_k) \text{ under } (X_1/u_1), \dots, (X_k/u_k)$

- ▶ Hence: There is $(w_{\texttt{tid}}, u_1, \ldots, u_k) \in \mathcal{I}^*(F_s)$
- ▶ Implies: $\nu \in f_s$ with $\nu[a_j] = u_j$ for $1 \le j \le k$
- ▶ By fragmentation: $\mu \in r$ with $\mu[a_j] = \nu[a_j]$ for $1 \le j \le k$
- As $m \notin \{1, \ldots, k\}$: $(u_1, \ldots, u_k, w_{k+1}, \ldots, w_n) \in \mathcal{I}^*(R)$

Only-if-part: Apply argumentation backwards!

technische universität

Inference-Proofness of Fragmentation

Showing the Inference-Proofness

Proof of Correctness (5) – Preparing Step

Second part of proving $\mathcal{I}^* \models_M db_r$: Show that \mathcal{I}^* satisfies

$$(\forall X_1) \dots (\forall X_k) [(\exists X_{tid}) (\exists X'_{tid}) [F_s(X_{tid}, X_1, \dots, X_k) \land F_s(X'_{tid}, X_1, \dots, X_k) \land (X_{tid} \neq X'_{tid})] \Rightarrow$$
$$\exists X_{k+1}) \dots (\exists X_n) (\exists X'_{k+1}) \dots (\exists X'_n) [R(X_1, \dots, X_k, X_{k+1}, \dots, X_n) \land R(X_1, \dots, X_k, X'_{k+1}, \dots, X'_n) \land \bigvee_{j=k+1}^n (X_j \neq X'_j)]]$$

Inference-Proofness of Fragmentation

Showing the Inference-Proofness

technische universität dortmund

Proof of Correctness (5)

Assume: $\mathcal{I}^* \models_M$ premise under $(X_1/u_1), \ldots, (X_k/u_k)$

- Hence, with $w_{tid} \neq w'_{tid}$
 - $(w_{\text{tid}}, u_1, \ldots, u_k) \in \mathcal{I}^*(F_s)$
 - $(w'_{\text{tid}}, u_1, \ldots, u_k) \in \mathcal{I}^*(F_s)$
- ▶ Implies: $\nu, \nu' \in f_s$ with $\nu[a_j] = \nu'[a_j] = u_j$ for $1 \le j \le k$
- ▶ By T-IDs: $\mu, \mu' \in r$ with $\mu[a_j] = \mu'[a_j] = u_j$ for $1 \le j \le k$
- ▶ No duplicates in $r \rightarrow \mu[a_p] \neq \mu'[a_p]$ for a $p \in \{k + 1, ..., n\}$
- Accordingly
 - $(u_1,\ldots,u_k,w_{k+1},\ldots,w_n) \in \mathcal{I}^*(R)$
 - $\blacktriangleright (u_1,\ldots,u_k,w'_{k+1},\ldots,w'_n) \in \mathcal{I}^*(R)$
 - If $p \neq m$: Obviously $w_p \neq w'_p$
 - If p = m: $w_m \neq w'_m$ because φ_m is injective

Inference-Proofness of Fragmentation

Showing the Inference-Proofness

tu technische universität dortmund

Proof of Correctness (6)

To prove $\mathcal{I}^* \models_M prior_{SC_R}$: Construct temp. DB-Interpretation $\mathcal{I}_t(R) := \{ (\mu[a_1], \dots, \mu[a_m], \dots, \mu[a_n]) \mid \mu \in r \}$

Obviously: $\mathcal{I}_t \models_M prior_{SC_R}$

About a DB-Interpretation \mathcal{I} satisfying prior_{SCR}

- Specific combinations of values in tuples not neccessary
- Only equalities and diversities in each column important

Between \mathcal{I}_t and \mathcal{I}^* holds: $(u_1, \ldots, u_m, \ldots, u_n) \in \mathcal{I}_t(R)$ iff $(u_1, \ldots, \varphi_m(u_m), \ldots, u_n) \in \mathcal{I}^*(R)$ By injectivity: $u'_m = u''_m$ iff $\varphi_m(u'_m) = \varphi_m(u''_m)$

Inference-Proofness of Fragmentation

Showing the Inference-Proofness

Proof of Correctness (7)

Last step to prove: $\mathcal{I}^* \not\models_M ilde{\Psi}(m{v})$ with $m{v} = (v_{i_1}, \dots, v_{i_\ell})$

$$\begin{aligned} \mathcal{I}^* &\models_M \tilde{\Psi}(\mathbf{v}) \Leftrightarrow \\ \bullet & \text{There is } (u_1, \dots, u_m, \dots, u_{|\mathcal{A}_{\mathcal{R}}|}) \in \mathcal{I}^*(\mathcal{R}) & \text{with} \\ \bullet & u_j = v_j \text{ for all } j \in \{i_1, \dots, i_{\ell}\} : \end{aligned}$$

This does not hold

For all (u₁,..., u_m,..., u_{|A_R|}) ∈ I*(R): φ_m(·) = u_m
 φ_m : U_m → U \ {v_m}
 m ∈ {i₁,..., i_ℓ}

q.e.d.

technische universität

technische universität dortmund

That's all...

Thank you for your attention!