Database Fragmentation with Encryption: Under Which Semantic Constraints and A Priori Knowledge Can Two Keep a Secret?

Joachim Biskup Marcel Preuß
Information Systems and Security (ISSI)
Technische Universität Dortmund, Germany

March 11, 2013

Table of Contents

Confidentiality by Fragmentation
Motivation
An Approach to Fragmentation
Inference-Proofness of Fragmentation
How to Show Inference-Proofness
The Underlying Logic
Logic-Oriented View on Fragmentation Inference-Proofness under A Priori Knowledge

Creation of Appropriate Fragmentation
Conclusion and Future Work

Confidentiality by Fragmentation

Achieving Confidentiality by Breaking Associations

Today: Information is an important ressource
\rightarrow Confidentiality of information is important
Often: Only associations between pieces of information sensitive
Example: Situation in a hospital

- List of illnesses cured \rightsquigarrow Not sensitive
- List of patients \rightsquigarrow Not really sensitive
- Association: Patient and his illness \rightarrow Very sensitive

Goal: Confidentiality by breaking sensitive associations

Context of our contribution

Existing approach: Confidentiality by vertical fragmentation (by Aggarwal, Bawa, et al.)

- Formal framework of fragmentation (More or less)
- Formal declaration of confidentiality requirements
- Efficient computation of fragmented instances
- Answering queries over fragmented databases
- No formal proof of inference-proofness

Towards an Approach to Fragmentation

Assumptions: Underlying client-server framework

- Two servers, both honest, but curious
- No cooperation between servers
- Each server stores exactly one of two fragments
- Attacker has access to at most one server
- No persistent local storage
- All data must be stored externally
- Client only processes queries
- Authorized user has access to both servers (via client)

Assumptions About the Encryption Function

Approach employs encryption within fragmentation
Encryption function Enc: $\mathcal{U} \times \mathcal{U} \rightarrow \mathcal{U}$ satisfies group properties

- Each value of \mathcal{U} can be a
- Plaintext v
- Cryptographic key κ
- Ciphertext e
- Given an arbitrary pair of two values $\in\{v, \kappa, e\}$ The missing value $\in\{v, \kappa, e\}$ can be determined s.t.
$\operatorname{Enc}(v, \kappa)=e$ holds
- Decryption function: $\operatorname{Dec}(e, \kappa)=v$ iff $\operatorname{Enc}(v, \kappa)=e$

Fragmentation Compliant with Assumptions

Fragmentation $(\mathcal{F}, \mathcal{E})$ of instance r over schema $\langle R| A_{R}\left|S C_{R}\right\rangle$

- On schema level
- Distinguished attribute $a_{\mathrm{tid}} \notin A_{R}$ for tuple identifiers (TIDs)
- Set of "encrypted attributes" $\mathcal{E} \subseteq A_{R}$
- Set of fragments $\mathcal{F}=\left\{\left\langle F_{1}\right| A_{F_{1}}\left|S C_{F_{1}}\right\rangle,\left\langle F_{2}\right| A_{F_{2}}\left|S C_{F_{2}}\right\rangle\right\}$
- $A_{F_{i}}:=\left\{a_{\mathrm{tid}}\right\} \cup \bar{A}_{F_{i}}$ with $\quad \bar{A}_{F_{i}} \subseteq A_{R}$
- $S C_{F_{i}}:=\left\{a_{\text {tid }} \rightarrow \bar{A}_{F_{i}}\right\} \quad$ (Functional dependency)
- $\bar{A}_{F_{1}} \cup \bar{A}_{F_{2}}=A_{R}$ and $\bar{A}_{F_{1}} \cap \bar{A}_{F_{2}}=\mathcal{E}$
- On instance level
- Instances f_{1} over $\left\langle F_{1}\right| A_{F_{1}}\left|S C_{F_{1}}\right\rangle$ and f_{2} over $\left\langle F_{2}\right| A_{F_{2}}\left|S C_{F_{2}}\right\rangle$
- For each $\mu \in r$: exactly one $\nu_{1} \in f_{1}$, exactly one $\nu_{2} \in f_{2}$ with
- $\nu_{1}\left[a_{\mathrm{tid}}\right]=\nu_{2}\left[a_{\mathrm{tid}}\right]=v_{\mu} \quad$ s.t. $\quad v_{\mu}$ is globally unique
- $\nu_{i}[a]:=\mu[a]$ for each $a \in\left(\bar{A}_{F_{i}} \backslash \mathcal{E}\right), i \in\{1,2\}$
- $\nu_{1}[a]:=\operatorname{Enc}(\mu[a], \kappa)$ and $\nu_{2}[a]:=\kappa$ for each $a \in \mathcal{E}$ s.t. κ is random but globally unique f.e. $\mu \in r, a \in \mathcal{E}$

Fragmentation of Example Instance

R	SSN	Name	lliness	HurtBy	Doctor
	1234	Hellmann	Borderline	Hellmann	White
	2345	Dooley	Laceration	McKinley	Warren
	3456	McKinley	Laceration	Dooley	Warren
	3456	McKinley	Concussion	Dooley	Warren

F_{1}	tid	SSN	Name	HurtBy	Doctor	$F_{\mathbf{2}}$	tid	SSN	HurtBy	Illness
	1	$e_{\boldsymbol{S}}^{1}$	Hellmann	$e_{\boldsymbol{H}}^{1}$	White		1	$\kappa_{\boldsymbol{S}}^{1}$	$\kappa_{\boldsymbol{H}}^{1}$	Borderline
	2	$e_{\boldsymbol{S}}^{2}$	Dooley	$e_{\boldsymbol{H}}^{2}$	Warren		2	$\kappa_{\boldsymbol{S}}^{2}$	$\kappa_{\boldsymbol{H}}^{2}$	Laceration
	3	$e_{\boldsymbol{S}}^{3}$	McKinley	$e_{\boldsymbol{H}}^{3}$	Warren		3	$\kappa_{\boldsymbol{S}}^{3}$	$\kappa_{\boldsymbol{H}}^{3}$	Laceration
	4	$e_{\boldsymbol{S}}^{4}$	McKinley	$e_{\boldsymbol{H}}^{4}$	Warren		4	$\kappa_{\boldsymbol{S}}^{4}$	$\kappa_{\boldsymbol{H}}^{4}$	Concussion

SSN and HurtBy are "encrypted attributes"

Convention from now on

Consider: Rearrangement of columns of instances r, f_{1}, f_{2}
Suppose: $A_{R}=\left\{a_{1}, \ldots, a_{h}, a_{h+1}, \ldots, a_{k}, a_{k+1}, \ldots, a_{n}\right\}$ s.t.

	$A_{F_{i}} \backslash A_{R}$	$\left(A_{F_{1}} \backslash \mathcal{E}\right) \cap A_{R}$	$\mathcal{E} \cap A_{F_{i}} \cap A_{R}$	$\left(A_{F_{2}} \backslash \mathcal{E}\right) \cap A_{R}$
A_{R}		a_{1}, \ldots, a_{h}	a_{h+1}, \ldots, a_{k}	a_{k+1}, \ldots, a_{n}
$A_{F_{1}}$	$a_{\text {tid }}$	a_{1}, \ldots, a_{h}	a_{h+1}, \ldots, a_{k}	
$A_{F_{2}}$	$a_{\text {tid }}$		a_{h+1}, \ldots, a_{k}	a_{k+1}, \ldots, a_{n}

Attention: For $j \in\{h+1, \ldots, k\}$: Same attributes, different values

- Tuple $\mu \in r: \mu\left[a_{j}\right]$ is a plaintext value
- Tuple $\nu_{1} \in f_{1}: \nu_{1}\left[a_{j}\right]$ is a ciphertext value
- Tuple $\nu_{2} \in f_{2}: \nu_{2}\left[a_{j}\right]$ is a cryptographic key

Reconstructability of Original Instance r

Given: Fragment-instances f_{1} and f_{2} of original instance r
For $\nu_{1} \in f_{1}, \nu_{2} \in f_{2}$ with $\nu_{1}\left[a_{\mathrm{tid}}\right]=\nu_{2}\left[a_{\mathrm{tid}}\right]$:

$$
\left.\begin{array}{rl}
\nu_{1} \diamond \nu_{2}=(& \nu_{1}\left[a_{1}\right], \ldots, \nu_{1}\left[a_{h}\right], \\
& \operatorname{Dec}\left(\nu_{1}\left[a_{h+1}\right], \nu_{2}\left[a_{h+1}\right]\right), \ldots, \operatorname{Dec}\left(\nu_{1}\left[a_{k}\right], \nu_{2}\left[a_{k}\right]\right), \\
& \nu_{2}\left[a_{k+1}\right], \ldots, \nu_{2}\left[a_{n}\right]
\end{array}\right)
$$

By fragmentation: $\nu_{1} \diamond \nu_{2} \in r$

For $\nu_{1} \in f_{1}, \nu_{2} \in f_{2}$ with $\nu_{1}\left[a_{\text {tid }}\right] \neq \nu_{2}\left[a_{\text {tid }}\right]$:
$\nu_{1} \diamond \nu_{2}$ is undefined

Formal Declaration of Confidentiality Requirements

How to declare confidentiality requirements?

Syntax: Confidentiality Constraint c over $\langle R| A_{R}\left|S C_{R}\right\rangle$: Non-empty subset $c \subseteq A_{R}$ of attributes

Semantics: Confidentiality of fragmentation

- Let \mathcal{C} be a set of Confidentiality Constraints
- Fragmentation $(\mathcal{F}, \mathcal{E})$ is confidential w.r.t. $\mathcal{C} \Leftrightarrow$ For $i \in\{1,2\}: c \nsubseteq\left(A_{F_{i}} \backslash \mathcal{E}\right)$ for all $c \in \mathcal{C}$

Confidential Fragmentation of Example Instance

R	SSN	Name	Illness	HurtBy	Doctor
	1234	Hellmann	Borderline	Hellmann	White
	2345	Dooley	Laceration	McKinley	Warren
	3456	McKinley	Laceration	Dooley	Warren
	3456	McKinley	Concussion	Dooley	Warren

F_{1}	tid	SSN	Name	HurtBy	Doctor		F_{2}	tid	SSN	HurtBy	Illness
	1	$e_{\boldsymbol{S}}^{1}$	Hellmann	$e_{\boldsymbol{H}}^{1}$	White		1	$\kappa_{\boldsymbol{S}}^{1}$	$\kappa_{\boldsymbol{H}}^{1}$	Borderline	
	2	$e_{\boldsymbol{S}}^{2}$	Dooley	$e_{\boldsymbol{H}}^{2}$	Warren		2	$\kappa_{\boldsymbol{S}}^{2}$	$\kappa_{\boldsymbol{H}}^{2}$	Laceration	
	3	e_{S}^{3}	McKinley	$e_{\boldsymbol{H}}^{3}$	Warren		3	$\kappa_{\boldsymbol{S}}^{3}$	$\kappa_{\boldsymbol{H}}^{3}$	Laceration	
	4	$e_{\boldsymbol{S}}^{4}$	McKinley	$e_{\boldsymbol{H}}^{4}$	Warren		4	$\kappa_{\boldsymbol{S}}^{4}$	$\kappa_{\boldsymbol{H}}^{4}$	Concussion	

is confidential w.r.t.

$$
\left.\begin{array}{ll}
\mathcal{C}=\{ & c_{1}=\{\text { SSN }\},
\end{array} \quad c_{3}=\{\text { Name, HurtBy }\}, ~ 子, ~ c_{2}=\{\text { Name }, \text { Illness }\}, \quad c_{4}=\{\text { Illness }, \text { HurtBy }\} \quad\right\}
$$

Inference-Proofness of Fragmentation

Approach to Show Inference-Proofness

How to analyze inference-proofness?

- Controlled Interaction Execution (CIE) is known to be inference-proof
- Logic-oriented modelling of fragmentation within CIE-Framework from attacker's point of view
- Formal proof within logic-oriented framework

Construction of an Appropriate Logic: Syntax

Language \mathscr{L} : First-order logic with equality

- Set \mathcal{P} of predicate symbols
- F_{1} with arity $k+1=\left|A_{F_{1}}\right|$
- F_{2} with arity $n-h+1=\left|A_{F_{2}}\right|$
- R with arity $n=\left|A_{R}\right|$
- Distinguished binary predicate symbol \equiv
- A term of an atomic formula can be a
- Binary function symbol E, D
- Constant symbol of fixed infinite domain Dom
- Variable of infinite set Var $:=\left\{X_{1}, X_{2}, \ldots, Y_{1}, Y_{2}, \ldots\right\}$

Construction of an Appropriate Logic: Semantics

Interpretation \mathcal{I} for \mathscr{L} is a DB-Interpretation iff

- Universe $\mathcal{U}:=\mathcal{I}(D o m)=D o m$
- $\mathcal{I}(v)=v \quad$ for all $v \in \operatorname{Dom}$
- $\mathcal{I}(E)(v, \kappa)=e$ iff $\operatorname{Enc}(v, \kappa)=e$
- $\mathcal{I}(D)(e, \kappa)=v$ iff $\operatorname{Dec}(e, \kappa)=v$
- $P \in \mathcal{P}$ with arity m is interpreted by finite set $\mathcal{I}(P) \subset \mathcal{U}^{m}$
- $\mathcal{I}(\equiv)=\{(v, v) \mid v \in \mathcal{U}\}$

Complete instances r, f_{1} and f_{2} induce DB-Interpretation \mathcal{I}_{r}

- $\left(v_{1}, \ldots, v_{n}\right) \in \mathcal{I}_{r}(R)$ iff $\left(v_{1}, \ldots, v_{n}\right) \in r$
- Analogously for $\mathcal{I}_{r}\left(F_{1}\right), \mathcal{I}_{r}\left(F_{2}\right)$ induced by fragments f_{1}, f_{2} of r

Satisfaction and Implication Based on DB-Interpretation

Satisfaction of sentences (closed formulas) of \mathscr{L}

- Notation of satisfaction
- Consider: DB-Interpretation \mathcal{I}, set of sentences $\mathcal{S} \subset \mathscr{L}$
- \mathcal{I} satisfies \mathcal{S} written as $\mathcal{I} \models_{M} \mathcal{S}$
- Semantics of satisfaction: Same as in usual first-order logic

Implication based on DB-Interpretation

- Notation: $\mathcal{S} \subset \mathscr{L}$ implies $\Phi \in \mathscr{L}$ written as $\mathcal{S} \models_{D B} \Phi$
- Semantics: $\mathcal{S} \models_{D B} \Phi$ iff

For each DB-Interpretation \mathcal{I} : If $\mathcal{I} \models_{M} \mathcal{S}$ then $\mathcal{I} \models_{M} \Phi$

Modelling the Positive Knowledge of f_{1}

Suppose: Attacker knows

- Outsourced fragment instance f_{1}
- Fragment $\left\langle F_{1}\right| A_{F_{1}}\left|S C_{F_{1}}\right\rangle$ with $A_{F_{1}}=\left\{a_{\mathrm{tid}}, a_{1}, \ldots, a_{k}\right\}$

Attacker's explicit positive knowlegde of f_{1}

- $d b_{f_{1}}^{+}:=\left\{F_{1}\left(\nu\left[a_{\text {tid }}\right], \nu\left[a_{1}\right], \ldots, \nu\left[a_{k}\right]\right) \mid \nu \in f_{1}\right\}$
- Functional dependency $a_{\mathrm{tid}} \rightarrow\left\{a_{1}, \ldots, a_{k}\right\} \in S C_{F_{1}}$

Negative Knowledge Resulting from Completeness

Problem: An attacker knows even more about f_{1}

- Instances r, f_{1} and f_{2} are supposed to be complete
- Every constant combination not in f_{1} is invalid by CWA \rightarrow Knowledge of the kind $\neg F_{1}\left(v_{\mathrm{tid}}, v_{1}, \ldots, v_{k}\right)$
- Problem: Infinite Domain \rightarrow Not explicitly enumerable
- Bright idea: Use Completeness-Sentence to model CWA

Construction of Completeness Sentence: Example

$F_{\mathbf{1}}$	tid	SSN	Name	HurtBy	Doctor
	1	$e_{\boldsymbol{S}}^{\mathbf{S}}$	Hellmann	$e_{\boldsymbol{H}}^{\mathbf{H}}$	White
	2	$e_{\boldsymbol{S}}^{\mathbf{S}}$	Dooley	$e_{\boldsymbol{H}}^{2}$	Warren
	3	$e_{\boldsymbol{S}}^{\mathbf{3}}$	McKinley	$e_{\boldsymbol{H}}^{3}$	Warren
	4	$e_{\boldsymbol{S}}^{4}$	McKinley	$e_{\boldsymbol{H}}^{4}$	Warren

Completeness sentence resulting from f_{1} :

$$
\begin{aligned}
& \left(\forall X_{t}\right)\left(\forall X_{S}\right)\left(\forall X_{N}\right)\left(\forall X_{H}\right)\left(\forall X_{D}\right)[\\
& \left(X_{t} \equiv 1 \wedge X_{S} \equiv e_{S}^{1} \wedge X_{N} \equiv \text { Hellmann } \wedge X_{H} \equiv e_{H}^{1} \wedge X_{D} \equiv \text { White }\right) \vee \\
& \left(X_{t} \equiv 2 \wedge X_{S} \equiv e_{S}^{2} \wedge X_{N} \equiv \text { Dooley } \wedge X_{H} \equiv e_{H}^{2} \wedge X_{D} \equiv \text { Warren }\right) \vee \\
& \left(X_{t} \equiv 3 \wedge X_{S} \equiv e_{S}^{3} \wedge X_{N} \equiv \text { McKinley } \wedge X_{H} \equiv e_{H}^{3} \wedge X_{D} \equiv \text { Warren }\right) \vee \\
& \left(X_{t} \equiv 4 \wedge X_{S} \equiv e_{S}^{4} \wedge X_{N} \equiv \text { McKinley } \wedge X_{H} \equiv e_{H}^{4} \wedge X_{D} \equiv \text { Warren }\right) \vee \\
& \neg F_{1}\left(X_{t}, X_{S}, X_{N}, X_{H}, X_{D}\right)
\end{aligned}
$$

Modelling the Negative Knowledge of f_{1}

Completeness sentence for running example:

$$
\begin{aligned}
& \left(\forall X_{t}\right)\left(\forall X_{S}\right)\left(\forall X_{N}\right)\left(\forall X_{H}\right)\left(\forall X_{D}\right)[\\
& \left(X_{t} \equiv 1 \wedge X_{S} \equiv e_{S}^{1} \wedge X_{N} \equiv \text { Hellmann } \wedge X_{H} \equiv e_{H}^{1} \wedge X_{D} \equiv \text { White }\right) \vee \\
& \left(X_{t} \equiv 2 \wedge X_{S} \equiv e_{S}^{2} \wedge X_{N} \equiv \text { Dooley } \wedge X_{H} \equiv e_{H}^{2} \wedge X_{D} \equiv \text { Warren }\right) \vee \\
& \left(X_{t} \equiv 3 \wedge X_{S} \equiv e_{S}^{3} \wedge X_{N} \equiv \text { MCKinley } \wedge X_{H} \equiv e_{H}^{3} \wedge X_{D} \equiv \text { Warren }\right) \vee \\
& \left(X_{t} \equiv 4 \wedge X_{S} \equiv e_{S}^{4} \wedge X_{N} \equiv \text { McKinley } \wedge X_{H} \equiv e_{H}^{4} \wedge X_{D} \equiv \text { Warren }\right) \vee \\
& \neg F_{1}\left(X_{t}, X_{S}, X_{N}, X_{H}, X_{D}\right)
\end{aligned}
$$

Construction of Completeness Sentence of $d b_{f_{1}}^{-}$in general:

$$
\left(\forall X_{\mathrm{tid}}\right) \ldots\left(\forall X_{k}\right)\left[\bigvee_{\nu \in f_{1}}\left(\bigwedge_{a_{j} \in A_{F_{1}}}\left(X_{j} \equiv \nu\left[a_{j}\right]\right)\right) \vee \neg F_{1}\left(X_{\mathrm{tid}}, X_{1}, \ldots, X_{k}\right)\right]
$$

Final Logic-Oriented View on f_{1}

Summing up: A logic-oriented view on f_{1} is modelled by

$$
d b_{f_{1}}:=d b_{f_{1}}^{+} \cup d b_{f_{1}}^{-} \cup\left\{a_{\text {tid }} \rightarrow\left\{a_{1}, \ldots, a_{k}\right\}\right\}
$$

But: Attacker is curious about original instance r (or f_{2}, respectively)

Attacker's Knowledge About r and $f_{2}(1)$

Suppose: Attacker knows

- Schema $\langle R| A_{R}\left|S C_{R}\right\rangle$ over which original instance r is built
- Process of fragmentation (algorithm)
- Computed fragmentation $\mathcal{F}=\left\{\left\langle F_{1}\right| A_{F_{1}}\left|S C_{F_{1}}\right\rangle,\left\langle F_{2}\right| A_{F_{2}}\left|S C_{F_{2}}\right\rangle\right\}$

Suppose: Attacker has no access to

- Original instance r (not materialized at all)
- Fragment instance f_{2} (hosted by "other" server)

Suppose: Attacker is curious about r (or f_{2}, respectively)

Database Fragmentation with Encryption: Can Two Keep a Secret?
L Inference-Proofness of Fragmentation
LLogic-Oriented View on Fragmentation

Attacker's Knowledge About r and $f_{2}(2)$

Attacker's deductions: For each $\nu_{1} \in f_{1}$

- Tuple $\nu_{2} \in f_{2}$ with $\nu_{2}\left[a_{\mathrm{tid}}\right]=\nu_{1}\left[a_{\mathrm{tid}}\right]$ exists
- Tuple $\mu \in r$ with $\nu_{1} \diamond \nu_{2}=\mu$ exists

Knowledge expressed as a sentence of $d b_{R}$:

$$
\begin{aligned}
& \left(\forall X_{\text {tid }}\right)\left(\forall X_{1}\right) \ldots\left(\forall X_{h}\right)\left(\forall X_{h+1}\right) \ldots\left(\forall X_{k}\right)[\\
& \quad F_{1}\left(X_{\text {tid }}, X_{1}, \ldots, X_{h}, X_{h+1}, \ldots, X_{k}\right) \\
& \quad \Rightarrow \\
& \quad\left(\exists Y_{h+1}\right) \ldots\left(\exists Y_{k}\right)\left(\exists Z_{k+1}\right) \ldots\left(\exists Z_{n}\right)[\\
& \quad F_{2}\left(X_{\text {tid }}, Y_{h+1}, \ldots, Y_{k}, Z_{k+1}, \ldots, Z_{n}\right) \wedge \\
& \left.\left.\quad R\left(X_{1}, \ldots, X_{h}, D\left(X_{h+1}, Y_{h+1}\right), \ldots, D\left(X_{k}, Y_{k}\right), Z_{k+1}, \ldots, Z_{n}\right)\right]\right]
\end{aligned}
$$

Database Fragmentation with Encryption: Can Two Keep a Secret?
L Inference-Proofness of Fragmentation
LLogic-Oriented View on Fragmentation

Attacker's Knowledge About r and $f_{2}(3)$

The equivalence does not hold!
Supposed fragmentation with "encrypted attribute" a_{2} :

R	a_{1}	a_{2}	a_{3}	F_{1}	$a_{\text {tid }}$	a_{1}	a_{2}	F_{2}	$a_{\text {tid }}$	a_{2}	a_{3}
	V_{1}	V_{2}	V_{3}		1	v_{1}	c_{2}		1	κ_{2}	V_{3}
	v_{1}^{\prime}	v_{2}	V_{3}		2	v_{1}^{\prime}	c_{2}^{\prime}		2	κ_{2}^{\prime}	v_{3}

Implication possible under equivalence:

$$
[F_{2}\left(1, \kappa_{2}, v_{3}\right) \wedge R(v_{1}^{\prime}, \overbrace{D\left(\square, \kappa_{2}\right)}^{=v_{2}}, v_{3})] \Rightarrow F_{1}\left(1, v_{1}^{\prime}, \square\right)
$$

By properties of perfect encryption: $D\left(\square, \kappa_{2}\right)=v_{2}$ iff $\square=c_{2}$
\rightarrow Tuple $\left(1, v_{1}^{\prime}, c_{2}\right) \in f_{1}$ \&

Attacker's Knowledge About r and $f_{2}(4)$

Attacker's deductions: Tuple $\nu_{2} \in f_{2}$ can only exist if

- Tuple $\nu_{1} \in f_{1}$ with $\nu_{1}\left[a_{\mathrm{tid}}\right]=\nu_{2}\left[a_{\mathrm{tid}}\right]$ exists
- Tuple $\mu \in r$ with $\nu_{1} \diamond \nu_{2}=\mu$ exists

Knowledge expressed as a sentence of $d b_{R}$:

$$
\begin{aligned}
& \left(\forall X_{\text {tid }}\right)\left(\forall X_{h+1}\right) \ldots\left(\forall X_{k}\right)\left(\forall X_{k+1}\right) \ldots\left(\forall X_{n}\right)[\\
& \quad F_{2}\left(X_{\text {tid }}, X_{h+1}, \ldots, X_{k}, X_{k+1}, \ldots, X_{n}\right) \\
& \quad \Rightarrow \\
& \quad\left(\exists Y_{1}\right) \ldots\left(\exists Y_{h}\right)\left(\exists Z_{h+1}\right) \ldots\left(\exists Z_{k}\right)[\\
& \quad F_{1}\left(X_{\mathrm{tid}}, Y_{1}, \ldots, Y_{h}, Z_{h+1}, \ldots, Z_{k}\right) \wedge \\
& \left.\left.\quad R\left(Y_{1}, \ldots, Y_{h}, D\left(Z_{h+1}, X_{h+1}\right), \ldots, D\left(Z_{k}, X_{k}\right), X_{k+1}, \ldots, X_{n}\right)\right]\right]
\end{aligned}
$$

Database Fragmentation with Encryption: Can Two Keep a Secret?
L Inference-Proofness of Fragmentation
LLogic-Oriented View on Fragmentation

Attacker's Knowledge About r and $f_{2}(5)$

The equivalence does not hold!
Supposed fragmentation with "encrypted attribute" a_{2} :

R	a_{1}	a_{2}	a_{3}	F_{1}	$a_{\text {tid }}$	a_{1}	a_{2}	F_{2}	$a_{\text {tid }}$	a_{2}	a_{3}
	v_{1}	V_{2}	V_{3}		1	v_{1}	c_{2}		1	κ_{2}	V_{3}
	v_{1}	v_{2}			2	v_{1}	c_{2}^{\prime}		2	κ_{2}^{\prime}	v_{3}^{\prime}

Implication possible under equivalence:

$$
[F_{1}\left(1, v_{1}, c_{2}\right) \wedge R(v_{1}, \overbrace{D\left(c_{2}, \square\right)}^{=v_{2}}, v_{3}^{\prime})] \Rightarrow F_{2}\left(1, \square, v_{3}^{\prime}\right)
$$

By properties of perfect encryption: $D\left(c_{2}, \square\right)=v_{2}$ iff $\square=\kappa_{2}$
\rightarrow Tuple $\left(1, \kappa_{2}, v_{3}^{\prime}\right) \in f_{2}$ 亿

Attacker's Knowledge About r and $f_{2}(6)$

Attacker's deductions: Tuple $\mu \in r$ exists iff

- Tuples $\nu_{1} \in f_{1}$ and $\nu_{2} \in f_{2}$ with $\nu_{1}\left[a_{\text {tid }}\right]=\nu_{2}\left[a_{\text {tid }}\right]$ exist s.t.
- $\nu_{1} \diamond \nu_{2}=\mu$ holds

Knowledge expressed as a sentence of $d b_{R}$:

$$
\begin{aligned}
& \left(\forall X_{1}\right) \ldots\left(\forall X_{h}\right)\left(\forall X_{h+1}\right) \ldots\left(\forall X_{k}\right)\left(\forall X_{k+1}\right) \ldots\left(\forall X_{n}\right)[\\
& \quad R\left(X_{1}, \ldots, X_{h}, X_{h+1}, \ldots, X_{k}, X_{k+1}, \ldots, X_{n}\right) \\
& \quad \Leftrightarrow \\
& \left(\exists Z_{\text {tid }}\right)\left(\exists Y_{h+1}\right) \ldots\left(\exists Y_{k}\right)[\\
& \quad F_{2}\left(Z_{\text {tid }}, Y_{h+1}, \ldots, Y_{k}, X_{k+1}, \ldots, X_{n}\right) \wedge \\
& \left.\left.\quad F_{1}\left(Z_{\text {tid }}, X_{1}, \ldots, X_{h}, E\left(X_{h+1}, Y_{h+1}\right), \ldots, E\left(X_{k}, Y_{k}\right)\right)\right]\right]
\end{aligned}
$$

Here: Equivalence holds by fragmentation!

Attacker's Knowledge About r and $f_{2}(7)$

Attacker's deductions: By fragmentation and tuple-IDs

- If different tuples $\nu_{1}, \nu_{1}^{\prime} \in f_{1}$ are equal w.r.t. $\left(A_{F_{1}} \cap A_{R}\right) \backslash \mathcal{E}$, corresponding $\mu, \mu^{\prime} \in r$ are equal w.r.t. $\left(A_{F_{1}} \cap A_{R}\right) \backslash \mathcal{E}$
- But: μ and μ^{\prime} cannot be duplicates

Knowledge expressed as a sentence of $d b_{R}$:

$$
\begin{aligned}
& \left(\forall X_{\mathrm{tid}}\right)\left(\forall X_{\mathrm{tid}}^{\prime}\right)\left(\forall X_{1}\right) \ldots\left(\forall X_{h}\right)\left(\forall X_{h+1}\right) \ldots\left(\forall X_{k}\right)\left(\forall X_{h+1}^{\prime}\right) \ldots\left(\forall X_{k}^{\prime}\right)[\\
& \quad\left[F_{1}\left(X_{\mathrm{tid}}, X_{1}, \ldots, X_{h}, X_{h+1}, \ldots, X_{k}\right) \wedge\right. \\
& \left.\quad F_{1}\left(X_{\mathrm{tid}}^{\prime}, X_{1}, \ldots, X_{h}, X_{h+1}^{\prime}, \ldots, X_{k}^{\prime}\right) \wedge\left(X_{\mathrm{tid}} \neq X_{\mathrm{tid}}^{\prime}\right)\right] \\
& \quad \Rightarrow \\
& \quad\left(\exists Y_{h+1}\right) \ldots\left(\exists Y_{n}\right)\left(\exists Z_{h+1}\right) \ldots\left(\exists Z_{n}\right)[\\
& \quad R\left(X_{1}, \ldots, X_{h}, Y_{h+1}, \ldots, Y_{k}, Y_{k+1}, \ldots, Y_{n}\right) \wedge \\
& \left.\left.\quad R\left(X_{1}, \ldots, X_{h}, Z_{h+1}, \ldots, Z_{k}, Z_{k+1}, \ldots, Z_{n}\right) \wedge \bigvee_{j=h+1}^{n}\left(Y_{j} \neq Z_{j}\right)\right]\right]
\end{aligned}
$$

Attacker's Knowledge About r and $f_{2}(8)$

Attacker's deductions: By fragmentation and tuple-IDs

- If different tuples $\nu_{2}, \nu_{2}^{\prime} \in f_{2}$ are equal w.r.t. $\left(A_{F_{2}} \cap A_{R}\right) \backslash \mathcal{E}$, corresponding $\mu, \mu^{\prime} \in r$ are equal w.r.t. $\left(A_{F_{2}} \cap A_{R}\right) \backslash \mathcal{E}$
- But: μ and μ^{\prime} cannot be duplicates

Knowledge expressed as a sentence of $d b_{R}$:

$$
\begin{aligned}
& \left(\forall X_{\mathrm{tid}}\right)\left(\forall X_{\mathrm{tid}}^{\prime}\right)\left(\forall X_{h+1}\right) \ldots\left(\forall X_{k}\right)\left(\forall X_{h+1}^{\prime}\right) \ldots\left(\forall X_{k}^{\prime}\right)\left(\forall X_{k+1}\right) \ldots\left(\forall X_{n}\right)[\\
& \quad\left[F_{2}\left(X_{\mathrm{tid}}, X_{h+1}, \ldots, X_{k}, X_{k+1}, \ldots, X_{n}\right) \wedge\right. \\
& \left.\quad F_{2}\left(X_{\mathrm{tid}}^{\prime}, X_{h+1}^{\prime}, \ldots, X_{k}^{\prime}, X_{k+1}, \ldots, X_{n}\right) \wedge\left(X_{\mathrm{tid}} \neq X_{\mathrm{tid}}^{\prime}\right)\right] \\
& \quad \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
& \left(\exists Y_{1}\right) \ldots\left(\exists Y_{k}\right)\left(\exists Z_{1}\right) \ldots\left(\exists Z_{k}\right)[\\
& \quad R\left(Y_{1}, \ldots, Y_{h}, Y_{h+1}, \ldots, Y_{k}, X_{k+1}, \ldots, X_{n}\right) \wedge \\
& \left.\left.\quad R\left(Z_{1}, \ldots, Z_{h}, Z_{h+1}, \ldots, Z_{k}, X_{k+1}, \ldots, X_{n}\right) \wedge \bigvee_{j=1}^{k}\left(Y_{j} \neq Z_{j}\right)\right]\right]
\end{aligned}
$$

Confidentiality Constraints in the CIE-Framework

Design choice: Confidentiality constraints as potential secrets

- Supposition: Only those values or associations explicitly recorded in r are protected by confidentiality constraints
- About a potential secret $\Psi \in \mathscr{L}$ defined for a user:
- Ψ is a logic sentence
- If Ψ is true in instance r : User must not get to know this
- Otherwise: User may know that Ψ is false in instance r
- Assume: An attacker is aware of \mathcal{C}

Bridging the Differences

From Confidentiality Constraints to Potential Secrets

- Consider a confidentiality constraint $c_{i}=\left\{a_{i_{1}}, \ldots, a_{i_{\ell}}\right\}$
- Protect all constant combinations possible for $a_{i_{1}}, \ldots, a_{i_{\ell}}$
- Otherwise: Attacker can read secrets directly from potsec(C)
- But: Leads to an infinite number of sentences (as $|\operatorname{Dom}|=\infty$) \rightarrow One potential secret per possible constant combination
- Use free variables $X_{i_{1}}, \ldots, X_{i_{\ell}}$ to represent $a_{i_{1}}, \ldots, a_{i_{\ell}}$

Modelling of Confidentiality Constraints

Consider: Confidentiality constraint $c_{i} \in \mathcal{C}$

- $c_{i}=\left\{a_{i_{1}}, \ldots, a_{i_{\ell}}\right\} \subseteq\left\{a_{1}, \ldots, a_{n}\right\}=A_{R}$
- $A_{R} \backslash c_{i}=\left\{a_{i_{\ell+1}}, \ldots, a_{i_{n}}\right\}$

Construction of potsec (\mathcal{C}) :

- For all $c_{i} \in \mathcal{C}$: Add potential secret

$$
\Psi_{i}\left(\boldsymbol{X}_{\boldsymbol{i}}\right)=\left(\exists X_{i_{\ell+1}}\right) \ldots\left(\exists X_{i_{n}}\right) R\left(X_{1}, \ldots, X_{n}\right)
$$

- $\boldsymbol{X}_{\boldsymbol{i}}=\left(X_{i_{1}}, \ldots, X_{i_{\ell}}\right)$ is the vector of free variables of $\Psi_{i}\left(\boldsymbol{X}_{\boldsymbol{i}}\right)$

Expansion of the Confidentiality Policy

Given: $\Psi_{i}\left(\boldsymbol{X}_{\boldsymbol{i}}\right)$ with $\boldsymbol{X}_{\boldsymbol{i}}=\left(X_{i_{1}}, \ldots, X_{i \ell}\right)$
Solution: Expansion $\operatorname{ex}\left(\Psi_{i}\left(\boldsymbol{X}_{\boldsymbol{i}}\right)\right) \subset \mathscr{L}$

- Consider each $\boldsymbol{v}_{\boldsymbol{i}}=\left(v_{i_{1}}, \ldots, v_{i_{\ell}}\right) \in$ Dom $^{\ell}$
- Construct each sentence $\Psi_{i}\left(\boldsymbol{v}_{\boldsymbol{i}}\right)$

Expansion of potsec (\mathcal{C}) :

$$
\operatorname{ex}(\operatorname{potsec}(\mathcal{C})):=\bigcup_{\Psi(\boldsymbol{X}) \in \operatorname{potsec}(\mathcal{C})} \operatorname{ex}(\Psi(\boldsymbol{X}))
$$

The Impact of A-Priori Knowledge: Survey

Known now: Logic-oriented view on fragmentation
Until now: Attacker's a priori knowledge has been neglected

- Knowledge about the world in general
- Knowledge about semantic database constraints $S C_{R}$

Survey of the following results

- No inference-proofness under general a priori knowledge z
- Inference-proofness under constrained a priori knowledge

Goal: Construction of confidential fragmentation Complying with a priori knowledge

The Impact of A Priori Knowledge: Example (1)

Attacker's view on r based on f_{1} :

R	SSN	Name	Illness	HurtBy	Doctor
	$?$	Hellmann	$?$	$?$	White
	$?$	Dooley	$?$	$?$	Warren
	$?$	McKinley	$?$	$?$	Warren
	$?$	McKinley	$?$	$?$	Warren

Suppose attacker knows a priori:
"All patients of psychiatrist White suffer from Borderline."
As a sentence of \mathscr{L} :
$\left(\forall X_{S}\right)\left(\forall X_{N}\right)\left(\forall X_{I}\right)\left(\forall X_{H}\right)\left[R\left(X_{S}, X_{N}, X_{I}, X_{H}\right.\right.$, White $) \Rightarrow\left(X_{I} \equiv\right.$ BLine $\left.)\right]$
Attacker's updated view on r violates $c_{2}=\{$ Name, Illness $\}$:

R	SSN	Name	Illness	HurtBy	Doctor
	$?$	Hellmann	Borderline	$?$	White

The Impact of A Priori Knowledge: Example (2)

Attacker's updated view on original instance r :

R	SSN	Name	Illness	HurtBy	Doctor
	$?$	Hellmann	Borderline	$?$	White
	$?$	Dooley	$?$	$?$	Warren
	$?$	McKinley	$?$	$?$	Warren
	$?$	McKinley	$?$	$?$	Warren

Suppose attacker knows a priori:
"All patients suffering from Borderline have hurt themselves."
As a sentence of \mathscr{L} :
$\left(\forall X_{S}\right)\left(\forall X_{N}\right)\left(\forall X_{H}\right)\left(\forall X_{D}\right)\left[R\left(X_{S}, X_{N}\right.\right.$, BLine, $\left.\left.X_{H}, X_{D}\right) \Rightarrow\left(X_{N} \equiv X_{H}\right)\right]$
Attacker's updated view on r violates $c_{3}=\{$ Name, HurtBy $\}$:

R	SSN	Name	Illness	HurtBy	Doctor
	$?$	Hellmann	Borderline	Hellmann	White

About Inference-Proofness and A Priori Knowledge

Inference-Proofness: From attacker's point of view

- For each potential secret $\Psi_{i}\left(\boldsymbol{v}_{\boldsymbol{i}}\right) \in \operatorname{ex}(\operatorname{potsec}(\mathcal{C}))$
- Existence of alternative instance r^{\prime} over $\langle R| A_{R}\left|S C_{R}\right\rangle$ possible
- r^{\prime} is indistinguishable from original instance r
- r^{\prime} does not satisfy $\Psi_{i}\left(\boldsymbol{v}_{\boldsymbol{i}}\right)$

About a priori knowledge prior

- Contains sentences over predicate symbols R and \equiv
- Attacker knows: Original instance r satisfies prior
- Consequently: Each r^{\prime} also needs to satisfy prior

Towards Inference-Proofness of Alternative Instance

Create inference-proof alternative instance r^{\prime} w.r.t.

- Single potential secret $\Psi_{i}\left(v_{\boldsymbol{i}}\right)$ with $\boldsymbol{v}_{\boldsymbol{i}}=\left(v_{i_{1}}, \ldots, v_{i_{\ell}}\right)$
- Attacker knows from $f_{1}: \pi_{\left(A_{F_{1}} \backslash \mathcal{E}\right)}(r)$
- Choose $m \in\left\{i_{1}, \ldots, i_{\ell}\right\}$ s.t. $a_{m} \notin\left(A_{F_{1}} \backslash \mathcal{E}\right) \quad$ (i.e. $\left.a_{m} \in \bar{A}_{F_{2}}\right)$
- Make sure: Column a_{m} of r^{\prime} does not contain $v_{m} \in \boldsymbol{v}_{\boldsymbol{i}}$
- Syntactically restricted sentence $\Gamma \in$ prior over R and \equiv
- Attacker knows: Γ is satisfied by r
- Adopt all columns $\left\{a_{1}, \ldots, a_{n}\right\} \backslash\left\{a_{m}\right\}$ of r to construct r^{\prime}
- Ensure that Γ does not require
- Constant v_{m} to be in m-th column
- Equality between column m and other column

A Priori Knowledge and Multiple Potential Secrets

Consider example set \mathcal{C} within $\langle R| A_{R}\left|S C_{R}\right\rangle$

R	SSN	Name	Illness	HurtBy	Doctor
c_{1}	\times				
c_{2}		\times	\times		
c_{3}		\times		\times	
c_{4}			\times	\times	

- Columns Name and Doctor known from f_{1} \rightarrow Do not modify to preserve indistinguishability
- For each $\Psi_{i}\left(\boldsymbol{v}_{\boldsymbol{i}}\right)$: To be able to construct r^{\prime} protecting $\Psi_{i}\left(\boldsymbol{v}_{\boldsymbol{i}}\right)$ at least one column of c_{i} must be modifiable
- Each $\Gamma \in$ prior must comply with all modifiable columns
- In each $(\neg) R(\ldots)$ of Γ : No constants in modifiable columns
- No equalities expressed by variables between modifiable and non-modifiable columns

Database Fragmentation with Encryption: Can Two Keep a Secret?

Definition of A Priori Knowledge

Each $\Gamma \in$ prior is built s.t.

- Γ has form $(\forall x)(\exists y)\left[\bigvee_{j=1, \ldots, p} \neg R\left(t_{j, 1}, \ldots, t_{j, n}\right) \vee A_{p+1}\right]$
- A_{p+1} is either $\left(t_{p+1,1} \equiv t_{p+1,2}\right)$ or $\bigwedge_{j=p+1, \ldots, q} R\left(t_{j, 1}, \ldots, t_{j, n}\right)$
- Each $t_{j, i}$ is a variable or a constant symbol
- Γ is range-restricted: Each $X \in x$ occurs in a $\neg R(\ldots)$
- Γ is not DB-tautologic: No $Y \in y$ occurs in a $\neg R(\ldots)$

Definition of A Priori Knowledge

Moreover: prior must comply with "modifiable columns"
There exists a subset $M \subseteq\{h+1, \ldots, n\} \quad$ s.t.
(1) $M \cap\left\{i_{1}, \ldots, i_{\ell}\right\} \neq \emptyset$ for each $c_{i}=\left(a_{i_{1}}, \ldots, a_{i_{\ell}}\right) \in \mathcal{C}$
(2) For each $\Gamma \in$ prior exists a partioning $\mathcal{X}_{1}^{\Gamma} \dot{\cup} \mathcal{X}_{2}^{\Gamma}=\operatorname{Var}$ s.t.
(i) For each atom $R\left(t_{1}, \ldots, t_{n}\right)$ of Γ

- For $j \notin M$: term t_{j} is either a (quantified) variable of \mathcal{X}_{1}^{Γ} or a constant symbol of Dom
- For $j \in M$: term t_{j} is a (quantified) variable of \mathcal{X}_{2}^{Γ}
(ii) For each atom $\left(X_{i} \equiv X_{j}\right)$ of Γ :

Either $X_{i}, X_{j} \in \mathcal{X}_{1}^{\Gamma}$ or $X_{i}, X_{j} \in \mathcal{X}_{2}^{\Gamma}$
(iii) For each atom $\left(X_{i} \equiv v\right)$ of Γ with $v \in$ Dom:

Variable X_{i} is in \mathcal{X}_{1}^{Γ}

Database Fragmentation with Encryption: Can Two Keep a Secret?
L Inference-Proofness of Fragmentation
-Inference-Proofness under A Priori Knowledge

Coarse Sketch of Proof

To be shown:
for all $\Psi(v) \in \operatorname{ex}(\operatorname{potsec}(\mathcal{C})): d b_{f_{1}} \cup d b_{R} \cup$ prior $\not \vDash_{D B} \Psi(v)$
Steps of proof:

1. Choose $\tilde{\Psi}(\boldsymbol{v}) \in \operatorname{ex}(\operatorname{potsec}(\mathcal{C}))$ arbitrarily
2. Construct a DB-Interpretation $\mathcal{I}_{r^{\prime}}$ with

$$
\mathcal{I}_{r^{\prime}} \models_{M}\left\{\begin{array}{l}
d b_{f_{1}} \\
d b_{R} \\
\text { prior }
\end{array} \quad\right. \text { (Indistinguishability) }
$$

$$
\mathcal{I}_{r^{\prime}} \not \neq M \tilde{\Psi}(v)
$$

(Non-violation of potential secret)

Creation of Appropriate Fragmentation

Alternative Fragmentation of Example Instance

R	SSN	Name	Illness	HurtBy	Doctor
	1234	Hellmann	Borderline	Hellmann	White
	2345	Dooley	Laceration	McKinley	Warren
	3456	McKinley	Laceration	Dooley	Warren
	3456	McKinley	Concussion	Dooley	Warren

F_{1}	tid	SSN	lliness	HurtBy	Doctor		F_{2}	tid	SSN	HurtBy	Name
	1	$e_{\boldsymbol{S}}^{1}$	Borderline	$e_{\boldsymbol{H}}^{1}$	White		1	$\kappa_{\boldsymbol{S}}^{1}$	$\kappa_{\boldsymbol{H}}^{1}$	Hellmann	
	2	$e_{\boldsymbol{S}}^{2}$	Laceration	$e_{\boldsymbol{H}}^{2}$	Warren		2	$\kappa_{\boldsymbol{S}}^{2}$	$\kappa_{\boldsymbol{H}}^{2}$	Dooley	
	3	$e_{\boldsymbol{S}}^{3}$	Laceration	$e_{\boldsymbol{H}}^{3}$	Warren		3	$\kappa_{\boldsymbol{S}}^{3}$	κ_{H}^{3}	McKinley	
	4	$e_{\boldsymbol{S}}^{4}$	Concussion	$e_{\boldsymbol{H}}^{4}$	Warren			4	$\kappa_{\boldsymbol{S}}^{4}$	$\kappa_{\boldsymbol{H}}^{4}$	McKinley

is confidential w.r.t.

$$
\left.\begin{array}{ll}
\mathcal{C}=\{ & c_{1}=\{\operatorname{SSN}\},
\end{array} \quad c_{3}=\{\text { Name, HurtBy }\}, ~ 子, ~ c_{2}=\{\text { Name }, \text { Illness }\}, \quad c_{4}=\{\text { Illness }, \text { HurtBy }\} \quad\right\}
$$

A Priori Knowledge under Alternative Fragmentation

Attacker's view on r based on f_{1} :

R	SSN	Name	Illness	HurtBy	Doctor
	$?$	$?$	Borderline	$?$	White
	$?$	$?$	Laceration	$?$	Warren
	$?$	$?$	Laceration	$?$	Warren
	$?$	$?$	Concussion	$?$	Warren

Suppose attacker knows a priori:

1. $\left(\forall X_{S}\right)\left(\forall X_{N}\right)\left(\forall X_{I}\right)\left(\forall X_{H}\right)\left[R\left(X_{S}, X_{N}, X_{I}, X_{H}\right.\right.$, White $) \Rightarrow\left(X_{I} \equiv\right.$ BLine $\left.)\right]$
2. $\left(\forall X_{S}\right)\left(\forall X_{N}\right)\left(\forall X_{H}\right)\left(\forall X_{D}\right)\left[R\left(X_{S}, X_{N}\right.\right.$, BLine, $\left.\left.X_{H}, X_{D}\right) \Rightarrow\left(X_{N} \equiv X_{H}\right)\right]$

A Priori Knowledge is harmless (though premises satisfied)

1. Association Doctor \leftrightarrow Illness already known from f_{1}
2. For neither X_{N} nor X_{H} a constant is known

About the Creation of Appropriate Fragmentations

As seen in example: Given $\langle R| A_{R}\left|S C_{R}\right\rangle, \mathcal{C}$ and prior Some fragmentations achieve inference-proofness, others do not

Task: Create inference-proof fragmentation for given setting

- Can be modelled as Binary Integer Linear Program
- Optimization Goal: Minimize number of "encrypted attributes"
- Solver outputs feasible solution iff Inference-proof fragmentation exists

Conclusion and Future Work

Conclusion and Future Work

What has been achieved?

- Existing approach to confidentiality by fragmentation is
- Modelled logic-orientedly within CIE-framework
- Extended by attacker's a priori knowledge
- Within modelling: Formal proof of inference-proofness
- Algorithm for computing inference-proof fragmentations

What might be done in future?

- Extending feasible a priori knowledge \rightarrow Sufficient \& necessary condition
- Analyzing other approaches to confidentiality by fragmentation

Thank you for your attention!

