

Database Fragmentation with Encryption: Under Which Semantic Constraints and A Priori Knowledge Can Two Keep a Secret?

Joachim Biskup Marcel Preuß

Information Systems and Security (ISSI)

Technische Universität Dortmund, Germany

March 11, 2013

Table of Contents

Confidentiality by Fragmentation Motivation

An Approach to Fragmentation

Inference-Proofness of Fragmentation

How to Show Inference-Proofness The Underlying Logic Logic-Oriented View on Fragmentation Inference-Proofness under A Priori Knowledge

Creation of Appropriate Fragmentation

Conclusion and Future Work

Confidentiality by Fragmentation

Achieving Confidentiality by Breaking Associations

Today: Information is an important ressource \rightarrow Confidentiality of information is important

Often: Only associations between pieces of information sensitive

Example: Situation in a hospital

- List of illnesses cured \rightsquigarrow Not sensitive
- ► List of patients ~→ Not really sensitive
- Association: Patient and his illness \rightarrow Very sensitive

Goal: Confidentiality by breaking sensitive associations

Context of our contribution

Existing approach: Confidentiality by vertical fragmentation (by Aggarwal, Bawa, et al.)

- Formal framework of fragmentation (More or less)
- Formal declaration of confidentiality requirements
- Efficient computation of fragmented instances
- Answering queries over fragmented databases
- No formal proof of inference-proofness

An Approach to Fragmentation

Towards an Approach to Fragmentation

Assumptions: Underlying client-server framework

- Two servers, both honest, but curious
- No cooperation between servers
- Each server stores exactly one of two fragments
- Attacker has access to at most one server
- No persistent local storage
 - All data must be stored externally
 - Client only processes queries
- Authorized user has access to both servers (via client)

Assumptions About the Encryption Function

Approach employs encryption within fragmentation

Encryption function $\textit{Enc}: \mathcal{U} \times \mathcal{U} \rightarrow \mathcal{U}$ satisfies group properties

- Each value of $\mathcal U$ can be a
 - Plaintext v
 - Cryptographic key κ
 - Ciphertext e
- Given an arbitrary pair of two values ∈ {v, κ, e} The missing value ∈ {v, κ, e} can be determined s.t. Enc(v, κ) = e holds
- Decryption function: $Dec(e, \kappa) = v$ iff $Enc(v, \kappa) = e$

Confidentiality by Fragmentation

An Approach to Fragmentation

tu technische universität dortmund

Fragmentation Compliant with Assumptions

Fragmentation $(\mathcal{F}, \mathcal{E})$ of instance *r* over schema $\langle R | A_R | SC_R \rangle$

- On schema level
 - ▶ Distinguished attribute $a_{tid} \notin A_R$ for tuple identifiers (TIDs)
 - Set of "encrypted attributes" $\mathcal{E} \subseteq A_R$
 - Set of fragments $\mathcal{F} = \{\langle F_1 | A_{F_1} | SC_{F_1} \rangle, \langle F_2 | A_{F_2} | SC_{F_2} \rangle\}$
 - $A_{F_i} := \{a_{tid}\} \cup \overline{A}_{F_i}$ with $\overline{A}_{F_i} \subseteq A_R$
 - $SC_{F_i} := \{a_{tid} \rightarrow \overline{A}_{F_i}\}$ (Functional dependency)

$$\bullet \ \bar{A}_{F_1} \cup \bar{A}_{F_2} = A_R \quad \text{and} \quad \bar{A}_{F_1} \cap \bar{A}_{F_2} = \mathcal{E}$$

- On instance level
 - Instances f_1 over $\langle F_1 | A_{F_1} | SC_{F_1} \rangle$ and f_2 over $\langle F_2 | A_{F_2} | SC_{F_2} \rangle$
 - ▶ For each $\mu \in r$: exactly one $\nu_1 \in f_1$, exactly one $\nu_2 \in f_2$ with
 - $\nu_1[a_{tid}] = \nu_2[a_{tid}] = v_\mu$ s.t. v_μ is globally unique
 - ► $\nu_i[a] := \mu[a]$ for each $a \in (\overline{A}_{F_i} \setminus \mathcal{E})$, $i \in \{1, 2\}$
 - ▶ $\nu_1[a] := Enc(\mu[a], \kappa)$ and $\nu_2[a] := \kappa$ for each $a \in \mathcal{E}$ s.t. κ is random but globally unique f.e. $\mu \in r, a \in \mathcal{E}$

- Confidentiality by Fragmentation

An Approach to Fragmentation

Fragmentation of Example Instance

R	SSN	Name	Illness	HurtBy	Doctor
	1234	Hellmann	Borderline	Hellmann	White
	2345	Dooley	Laceration	McKinley	Warren
	3456	McKinley	Laceration	Dooley	Warren
	3456	McKinley	Concussion	Dooley	Warren

F 1	tid	SSN	Name	HurtBy	Doctor	F ₂	tid	SSN	HurtBy	Illness
	1	$e_{\mathbf{S}}^{1}$	Hellmann	e_{H}^{1}	White		1	κ_{s}^{1}	κ_{H}^{1}	Borderline
	2	e_{S}^{2}	Dooley	e_H^2	Warren		2	$\kappa^{\tilde{2}}_{S}$	κ_{H}^{2}	Laceration
	3	e3	McKinley	eH H	Warren		3	κ_{S}^{3}	κ ³ Η	Laceration
	4	e4 5	McKinley	e ⁴ H	Warren		4	$\kappa^{\bar{4}}_{S}$	⁴ н	Concussion

SSN and HurtBy are "encrypted attributes"

tu technische universität dortmund

Convention from now on

Consider: Rearrangement of columns of instances r, f_1 , f_2

Suppose: $A_R = \{a_1, \ldots, a_h, a_{h+1}, \ldots, a_k, a_{k+1}, \ldots, a_n\}$ s.t.

	$A_{F_i} \setminus A_R$	$(A_{F_1} \setminus \mathcal{E}) \cap A_R$	$\mathcal{E} \cap A_{F_i} \cap A_R$	$(A_{F_2} \setminus \mathcal{E}) \cap A_R$
A_R		a_1,\ldots,a_h	a_{h+1},\ldots,a_k	a_{k+1},\ldots,a_n
A_{F_1}	$a_{ t tid}$	a_1,\ldots,a_h	a_{h+1},\ldots,a_k	
A_{F_2}	a _{tid}		a_{h+1},\ldots,a_k	a_{k+1},\ldots,a_n

Attention: For $j \in \{h+1, \ldots, k\}$: Same attributes, different values

- Tuple $\mu \in r$: $\mu[a_j]$ is a plaintext value
- Tuple $\nu_1 \in f_1$: $\nu_1[a_j]$ is a ciphertext value
- Tuple $\nu_2 \in f_2$: $\nu_2[a_j]$ is a cryptographic key

Reconstructability of Original Instance r

Given: Fragment-instances f_1 and f_2 of original instance r

For $\nu_1 \in f_1$, $\nu_2 \in f_2$ with $\nu_1[a_{tid}] = \nu_2[a_{tid}]$:

$$\nu_1 \diamond \nu_2 = (\nu_1[a_1], \dots, \nu_1[a_h], \\ Dec(\nu_1[a_{h+1}], \nu_2[a_{h+1}]), \dots, Dec(\nu_1[a_k], \nu_2[a_k]), \\ \nu_2[a_{k+1}], \dots, \nu_2[a_n])$$

By fragmentation: $\nu_1 \diamond \nu_2 \in r$

For $\nu_1 \in f_1$, $\nu_2 \in f_2$ with $\nu_1[a_{tid}] \neq \nu_2[a_{tid}]$: $\nu_1 \diamond \nu_2$ is undefined

technische universität dortmund

Formal Declaration of Confidentiality Requirements

How to declare confidentiality requirements?

Syntax: Confidentiality Constraint c over $\langle R|A_R|SC_R\rangle$: Non-empty subset $c \subseteq A_R$ of attributes

Semantics: Confidentiality of fragmentation

- ▶ Let C be a set of Confidentiality Constraints
- ► Fragmentation $(\mathcal{F}, \mathcal{E})$ is confidential w.r.t. $\mathcal{C} \iff$ For $i \in \{1, 2\}$: $c \nsubseteq (A_{F_i} \setminus \mathcal{E})$ for all $c \in \mathcal{C}$

- Confidentiality by Fragmentation

An Approach to Fragmentation

Confidential Fragmentation of Example Instance

R	SSN	Name	Illness	HurtBy	Doctor
	1234	Hellmann	Borderline	Hellmann	White
	2345	Dooley	Laceration	McKinley	Warren
	3456	McKinley	Laceration	Dooley	Warren
	3456	McKinley	Concussion	Dooley	Warren

F ₁	tid	SSN	Name	HurtBy	Doctor	F ₂	tid	SSN	HurtBy	Illness
	1	e_{S}^{1}	Hellmann	e_{H}^{1}	White		1	κ_{S}^{1}	κ ¹ Η	Borderline
	2	e_{s}^{2}	Dooley	e_H^2	Warren		2	κ^2_{s}	κ ² κ _H	Laceration
	3	e3	McKinley	e ³ _H	Warren		3	κ_{S}^{3}	κ ³ Η	Laceration
	4	e 4	McKinley	e ⁴ _H	Warren		4	$\kappa_{\boldsymbol{S}}^{\boldsymbol{\tilde{4}}}$	κ ⁴ κ _H	Concussion

is confidential w.r.t.

$$\mathcal{C} = \{ c_1 = \{\text{SSN}\}, c_3 = \{\text{Name}, \text{HurtBy}\}, c_2 = \{\text{Name}, \text{Illness}\}, c_4 = \{\text{Illness}, \text{HurtBy}\} \}$$

Inference-Proofness of Fragmentation

Inference-Proofness of Fragmentation

How to Show Inference-Proofness

Approach to Show Inference-Proofness

How to analyze inference-proofness?

- Controlled Interaction Execution (CIE) is known to be inference-proof
- Logic-oriented modelling of fragmentation within CIE-Framework from attacker's point of view
- Formal proof within logic-oriented framework

Construction of an Appropriate Logic: Syntax

Language \mathscr{L} : First-order logic with equality

- Set \mathcal{P} of predicate symbols
 - F_1 with arity $k + 1 = |A_{F_1}|$
 - F_2 with arity $n h + 1 = |A_{F_2}|$
 - R with arity $n = |A_R|$
- Distinguished binary predicate symbol \equiv
- A term of an atomic formula can be a
 - ▶ Binary function symbol *E*, *D*
 - Constant symbol of fixed infinite domain Dom
 - ► Variable of infinite set Var := {X₁, X₂,..., Y₁, Y₂,...}

to technische universität dortmund

Construction of an Appropriate Logic: Semantics

Interpretation ${\mathcal I}$ for ${\mathscr L}$ is a DB-Interpretation $% {\mathcal I}$ iff

• Universe $\mathcal{U} := \mathcal{I}(Dom) = Dom$

•
$$\mathcal{I}(v) = v$$
 for all $v \in Dom$

•
$$\mathcal{I}(E)(v,\kappa) = e$$
 iff $Enc(v,\kappa) = e$

•
$$\mathcal{I}(D)(e,\kappa) = v$$
 iff $Dec(e,\kappa) = v$

• $P \in \mathcal{P}$ with arity *m* is interpreted by finite set $\mathcal{I}(P) \subset \mathcal{U}^m$

$$\blacktriangleright \ \mathcal{I}(\equiv) = \{ (v, v) \mid v \in \mathcal{U} \}$$

Complete instances r, f_1 and f_2 induce DB-Interpretation \mathcal{I}_r

•
$$(v_1,\ldots,v_n) \in \mathcal{I}_r(R)$$
 iff $(v_1,\ldots,v_n) \in r$

Analogously for $\mathcal{I}_r(F_1)$, $\mathcal{I}_r(F_2)$ induced by fragments f_1 , f_2 of r

technische universität dortmund

Satisfaction and Implication Based on DB-Interpretation

Satisfaction of sentences (closed formulas) of ${\mathscr L}$

- Notation of satisfaction
 - ▶ Consider: DB-Interpretation \mathcal{I} , set of sentences $\mathcal{S} \subset \mathscr{L}$
 - \mathcal{I} satisfies \mathcal{S} written as $\mathcal{I} \models_M \mathcal{S}$
- Semantics of satisfaction: Same as in usual first-order logic

Implication based on DB-Interpretation

- ▶ Notation: $S \subset \mathscr{L}$ implies $\Phi \in \mathscr{L}$ written as $S \models_{DB} \Phi$
- ► Semantics: $S \models_{DB} \Phi$ iff For each DB-Interpretation \mathcal{I} : If $\mathcal{I} \models_{M} S$ then $\mathcal{I} \models_{M} \Phi$

Logic-Oriented View on Fragmentation

Modelling the Positive Knowledge of f_1

Suppose: Attacker knows

- Outsourced fragment instance f1
- Fragment $\langle F_1 | A_{F_1} | SC_{F_1} \rangle$ with $A_{F_1} = \{a_{tid}, a_1, \dots, a_k\}$

Attacker's explicit positive knowlegde of f_1

- ▶ $db_{f_1}^+ := \{F_1(\nu[a_{tid}], \nu[a_1], \dots, \nu[a_k]) \mid \nu \in f_1\}$
- ▶ Functional dependency $a_{\texttt{tid}} \rightarrow \{a_1, \ldots, a_k\} \in SC_{F_1}$

to technische universität dortmund

Negative Knowledge Resulting from Completeness

Problem: An attacker knows even more about f_1

- Instances r, f_1 and f_2 are supposed to be complete
- ► Every constant combination not in f₁ is invalid by CWA → Knowledge of the kind ¬F₁ (v_{tid}, v₁,..., v_k)
- Problem: Infinite Domain \rightarrow Not explicitly enumerable
- Bright idea: Use Completeness-Sentence to model CWA

Inference-Proofness of Fragmentation

Logic-Oriented View on Fragmentation

Construction of Completeness Sentence: Example

F1	tid	SSN	Name	HurtBy	Doctor
	1	e_{s}^{1}	Hellmann	e_{H}^{1}	White
	2	e_{s}^{2}	Dooley	e ² _H	Warren
	3	es	McKinley	eH eH	Warren
	4	e 4	McKinley	e ⁴ _H	Warren

Completeness sentence resulting from f_1 :

Inference-Proofness of Fragmentation

Logic-Oriented View on Fragmentation

Modelling the Negative Knowledge of f_1

Completeness sentence for running example:

 $(\forall X_t)(\forall X_S)(\forall X_N)(\forall X_H)(\forall X_D) [$ $(X_t \equiv 1 \land X_S \equiv e_S^1 \land X_N \equiv \text{Hellmann} \land X_H \equiv e_H^1 \land X_D \equiv \text{White}) \lor$ $(X_t \equiv 2 \land X_S \equiv e_S^2 \land X_N \equiv \text{Dooley} \land X_H \equiv e_H^2 \land X_D \equiv \text{Warren}) \lor$ $(X_t \equiv 3 \land X_S \equiv e_S^3 \land X_N \equiv \text{McKinley} \land X_H \equiv e_H^3 \land X_D \equiv \text{Warren}) \lor$ $(X_t \equiv 4 \land X_S \equiv e_S^4 \land X_N \equiv \text{McKinley} \land X_H \equiv e_H^4 \land X_D \equiv \text{Warren}) \lor$ $\neg F_1(X_t, X_S, X_N, X_H, X_D)]$

Construction of Completeness Sentence of $db_{f_1}^-$ in general:

$$(\forall X_{\texttt{tid}}) \dots (\forall X_k) \left[\bigvee_{\nu \in f_1} \left(\bigwedge_{a_j \in A_{F_1}} (X_j \equiv \nu[a_j]) \right) \vee \neg F_1(X_{\texttt{tid}}, X_1, \dots, X_k) \right]$$

Final Logic-Oriented View on f_1

Summing up: A logic-oriented view on f_1 is modelled by

$$db_{f_1} := db_{f_1}^+ \cup db_{f_1}^- \cup \{a_{\texttt{tid}} \rightarrow \{a_1, \dots, a_k\}\}$$

But: Attacker is curious about original instance r (or f_2 , respectively)

Attacker's Knowledge About r and f_2 (1)

Suppose: Attacker knows

- Schema $\langle R|A_R|SC_R\rangle$ over which original instance r is built
- Process of fragmentation (algorithm)
- Computed fragmentation $\mathcal{F} = \{\langle F_1 | A_{F_1} | SC_{F_1} \rangle, \langle F_2 | A_{F_2} | SC_{F_2} \rangle\}$

Suppose: Attacker has no access to

- Original instance r (not materialized at all)
- ▶ Fragment instance *f*₂ (hosted by "other" server)

Suppose: Attacker is curious about r (or f_2 , respectively)

Attacker's Knowledge About r and f_2 (2)

Attacker's deductions: For each $u_1 \in f_1$

- Tuple $\nu_2 \in f_2$ with $\nu_2[a_{tid}] = \nu_1[a_{tid}]$ exists
- Tuple $\mu \in r$ with $\nu_1 \diamond \nu_2 = \mu$ exists

Knowledge expressed as a sentence of db_R :

$$\begin{array}{l} \left(\forall X_{\text{tid}} \right) \left(\forall X_{1} \right) \dots \left(\forall X_{h} \right) \left(\forall X_{h+1} \right) \dots \left(\forall X_{k} \right) \left[\\ F_{1} \left(X_{\text{tid}}, X_{1}, \dots, X_{h}, X_{h+1}, \dots, X_{k} \right) \\ \Rightarrow \\ \left(\exists Y_{h+1} \right) \dots \left(\exists Y_{k} \right) \left(\exists Z_{k+1} \right) \dots \left(\exists Z_{n} \right) \left[\\ F_{2} \left(X_{\text{tid}}, Y_{h+1}, \dots, Y_{k}, Z_{k+1}, \dots, Z_{n} \right) \land \\ R \left(X_{1}, \dots, X_{h}, D \left(X_{h+1}, Y_{h+1} \right), \dots, D \left(X_{k}, Y_{k} \right), Z_{k+1}, \dots, Z_{n} \right) \right] \right]$$

Attacker's Knowledge About r and f_2 (3)

The equivalence does not hold!

Supposed fragmentation with "encrypted attribute" a_2 :

R	a ₁	a ₂	a ₃		F_1	$a_{ m tid}$	a_1	a 2	F_2	$a_{ m tid}$	a ₂	a ₃
	<i>v</i> ₁	<i>v</i> ₂	V ₃	-		1	v_1	<i>c</i> ₂		1	κ_2	V ₃
	v_1'	<i>v</i> ₂	V ₃			2	v_1'	c'_2		2	κ_2'	V ₃

Implication possible under equivalence:

$$\left[F_2(1,\kappa_2,\nu_3)\wedge R(\nu_1',\overbrace{D(\Box,\kappa_2)}^{=\nu_2},\nu_3)\right] \Rightarrow F_1(1,\nu_1',\Box)$$

By properties of perfect encryption: $D(\Box, \kappa_2) = v_2$ iff $\Box = c_2 \rightarrow \text{Tuple } (1, v'_1, c_2) \in f_1 \not =$

Attacker's Knowledge About r and f_2 (4)

Attacker's deductions: Tuple $\nu_2 \in f_2$ can *only* exist if

- Tuple $\nu_1 \in f_1$ with $\nu_1[a_{tid}] = \nu_2[a_{tid}]$ exists
- Tuple $\mu \in r$ with $\nu_1 \diamond \nu_2 = \mu$ exists

Knowledge expressed as a sentence of db_R :

$$\begin{aligned} (\forall X_{\text{tid}}) (\forall X_{h+1}) \dots (\forall X_k) (\forall X_{k+1}) \dots (\forall X_n) [\\ F_2 (X_{\text{tid}}, X_{h+1}, \dots, X_k, X_{k+1}, \dots, X_n) \\ \Rightarrow \\ (\exists Y_1) \dots (\exists Y_h) (\exists Z_{h+1}) \dots (\exists Z_k) [\\ F_1 (X_{\text{tid}}, Y_1, \dots, Y_h, Z_{h+1}, \dots, Z_k) \land \\ R (Y_1, \dots, Y_h, D (Z_{h+1}, X_{h+1}), \dots, D (Z_k, X_k), X_{k+1}, \dots, X_n)]] \end{aligned}$$

Attacker's Knowledge About r and f_2 (5)

The equivalence does not hold!

Supposed fragmentation with "encrypted attribute" a_2 :

R	a ₁	a ₂	a ₃		F_1	a _{tid}	a_1	a 2	F_2	$a_{\rm tid}$	a ₂	a ₃
	<i>v</i> ₁	<i>v</i> ₂	V ₃	-		1	v_1	<i>c</i> ₂		1	κ_2	V ₃
	v_1	<i>v</i> ₂	v'_3			2	v_1	c'_2		2	κ_2'	v'_3

Implication possible under equivalence:

$$\left[F_1(1, v_1, c_2) \land R(v_1, \overbrace{D(c_2, \Box)}^{=v_2}, v_3')\right] \Rightarrow F_2(1, \Box, v_3')$$

By properties of perfect encryption: $D(c_2, \Box) = v_2$ iff $\Box = \kappa_2$ \rightarrow Tuple $(1, \kappa_2, v'_3) \in f_2 \notin$

technische universität dortmund

Attacker's Knowledge About r and f_2 (6)

Attacker's deductions: Tuple $\mu \in r$ exists iff

- ▶ Tuples $\nu_1 \in f_1$ and $\nu_2 \in f_2$ with $\nu_1[a_{tid}] = \nu_2[a_{tid}]$ exist s.t.
- $\nu_1 \diamond \nu_2 = \mu$ holds

Knowledge expressed as a sentence of db_R :

$$\begin{array}{l} \left[\forall X_{1} \right) \dots \left(\forall X_{h} \right) \left(\forall X_{h+1} \right) \dots \left(\forall X_{k} \right) \left(\forall X_{k+1} \right) \dots \left(\forall X_{n} \right) \left[\\ R \left(X_{1}, \dots, X_{h}, X_{h+1}, \dots, X_{k}, X_{k+1}, \dots, X_{n} \right) \\ \Leftrightarrow \\ \left(\exists Z_{\text{tid}} \right) \left(\exists Y_{h+1} \right) \dots \left(\exists Y_{k} \right) \left[\\ F_{2} \left(Z_{\text{tid}}, Y_{h+1}, \dots, Y_{k}, X_{k+1}, \dots, X_{n} \right) \land \\ F_{1} \left(Z_{\text{tid}}, X_{1}, \dots, X_{h}, E \left(X_{h+1}, Y_{h+1} \right), \dots, E \left(X_{k}, Y_{k} \right) \right) \right] \right]$$

Here: Equivalence holds by fragmentation!

Inference-Proofness of Fragmentation

Logic-Oriented View on Fragmentation

technische universität dortmund

Attacker's Knowledge About r and f_2 (7)

Attacker's deductions: By fragmentation and tuple-IDs

- ▶ If different tuples $\nu_1, \nu'_1 \in f_1$ are equal w.r.t. $(A_{F_1} \cap A_R) \setminus \mathcal{E}$, corresponding $\mu, \mu' \in r$ are equal w.r.t. $(A_{F_1} \cap A_R) \setminus \mathcal{E}$
- But: μ and μ' cannot be duplicates

Knowledge expressed as a sentence of db_R :

$$(\forall X_{\text{tid}}) (\forall X'_{\text{tid}}) (\forall X_1) \dots (\forall X_h) (\forall X_{h+1}) \dots (\forall X_k) (\forall X'_{h+1}) \dots (\forall X'_k) [[F_1 (X_{\text{tid}}, X_1, \dots, X_h, X_{h+1}, \dots, X_k) \land F_1 (X'_{\text{tid}}, X_1, \dots, X_h, X'_{h+1}, \dots, X'_k) \land (X_{\text{tid}} \neq X'_{\text{tid}})] \Rightarrow (\exists Y_{h+1}) \dots (\exists Y_n) (\exists Z_{h+1}) \dots (\exists Z_n) [R (X_1, \dots, X_h, Y_{h+1}, \dots, Y_k, Y_{k+1}, \dots, Y_n) \land R (X_1, \dots, X_h, Z_{h+1}, \dots, Z_k, Z_{k+1}, \dots, Z_n) \land \bigvee_{j=h+1}^n (Y_j \neq Z_j)]]$$

Inference-Proofness of Fragmentation

Logic-Oriented View on Fragmentation

technische universität dortmund

Attacker's Knowledge About r and f_2 (8)

Attacker's deductions: By fragmentation and tuple-IDs

- If different tuples v₂, v'₂ ∈ f₂ are equal w.r.t. (A_{F2} ∩ A_R) \ E, corresponding µ, µ' ∈ r are equal w.r.t. (A_{F2} ∩ A_R) \ E
- But: μ and μ' cannot be duplicates

Knowledge expressed as a sentence of db_R :

$$(\forall X_{\text{tid}}) (\forall X'_{\text{tid}}) (\forall X_{h+1}) \dots (\forall X_k) (\forall X'_{h+1}) \dots (\forall X'_k) (\forall X_{k+1}) \dots (\forall X_n) [[F_2 (X_{\text{tid}}, X_{h+1}, \dots, X_k, X_{k+1}, \dots, X_n) \land F_2 (X'_{\text{tid}}, X'_{h+1}, \dots, X'_k, X_{k+1}, \dots, X_n) \land (X_{\text{tid}} \neq X'_{\text{tid}})] \Rightarrow (\exists Y_1) \dots (\exists Y_k) (\exists Z_1) \dots (\exists Z_k) [R (Y_1, \dots, Y_h, Y_{h+1}, \dots, Y_k, X_{k+1}, \dots, X_n) \land R (Z_1, \dots, Z_h, Z_{h+1}, \dots, Z_k, X_{k+1}, \dots, X_n) \land \bigvee_{j=1}^k (Y_j \neq Z_j)]]$$

Confidentiality Constraints in the CIE-Framework

Design choice: Confidentiality constraints as potential secrets

- Supposition: Only those values or associations explicitly recorded in r are protected by confidentiality constraints
- About a potential secret $\Psi \in \mathscr{L}$ defined for a user:
 - Ψ is a logic sentence
 - If Ψ is true in instance r: User must not get to know this
 - Otherwise: User may know that Ψ is false in instance r
- Assume: An attacker is aware of C

Bridging the Differences

From Confidentiality Constraints to Potential Secrets

- Consider a confidentiality constraint $c_i = \{a_{i_1}, \ldots, a_{i_\ell}\}$
- Protect all constant combinations possible for $a_{i_1}, \ldots, a_{i_\ell}$
 - ► Otherwise: Attacker can read secrets directly from *potsec*(C)
 - But: Leads to an infinite number of sentences (as |Dom| = ∞)
 → One potential secret per possible constant combination
- Use free variables $X_{i_1}, \ldots, X_{i_\ell}$ to represent $a_{i_1}, \ldots, a_{i_\ell}$

Modelling of Confidentiality Constraints

Consider: Confidentiality constraint $c_i \in C$

c_i = {*a_i*,..., *a_i*} ⊆ {*a*₁,..., *a_n*} = *A_R A_R* \ *c_i* = {*a_i*_{ℓ+1},..., *a_{in}*}

Construction of potsec(C):

For all $c_i \in C$: Add potential secret

$$\Psi_i(\boldsymbol{X}_i) = (\exists X_{i_{\ell+1}}) \dots (\exists X_{i_n}) R(X_1, \dots, X_n)$$

• $X_i = (X_{i_1}, \dots, X_{i_\ell})$ is the vector of free variables of $\Psi_i(X_i)$

Expansion of the Confidentiality Policy

Given: $\Psi_i(\boldsymbol{X_i})$ with $\boldsymbol{X_i} = (X_{i_1}, \dots, X_{i_\ell})$

Solution: Expansion $ex(\Psi_i(X_i)) \subset \mathscr{L}$

- ▶ Consider each $v_i = (v_{i_1}, \dots, v_{i_\ell}) \in Dom^\ell$
- Construct each sentence $\Psi_i(\mathbf{v}_i)$

Expansion of potsec(C):

$$\exp(potsec(\mathcal{C})) := \bigcup_{\Psi(\boldsymbol{X}) \in potsec(\mathcal{C})} \exp(\Psi(\boldsymbol{X}))$$

The Impact of A-Priori Knowledge: Survey

Known now: Logic-oriented view on fragmentation

Until now: Attacker's a priori knowledge has been neglected

- Knowledge about the world in general
- ► Knowledge about semantic database constraints SC_R

Survey of the following results

- ► No inference-proofness under general a priori knowledge 쉵
- Inference-proofness under constrained a priori knowledge
- **Goal:** Construction of confidential fragmentation Complying with a priori knowledge

LInference-Proofness under A Priori Knowledge

The Impact of A Priori Knowledge: Example (1)

Attacker's view on r based on f_1 :

R	SSN	Name	Illness	HurtBy	Doctor
	?	Hellmann	?	?	White
	?	Dooley	?	?	Warren
	?	McKinley	?	?	Warren
	?	McKinley	?	?	Warren

Suppose attacker knows a priori:

"All patients of psychiatrist White suffer from Borderline."

As a sentence of \mathscr{L} :

 $(\forall X_S)(\forall X_N)(\forall X_I)(\forall X_H)[R(X_S, X_N, X_I, X_H, \texttt{White}) \Rightarrow (X_I \equiv \texttt{BLine})]$

Attacker's updated view on r violates $c_2 = \{Name, Illness\}$:

R	SSN	Name	Illness	HurtBy	Doctor
	?	Hellmann	Borderline	?	White

technische universität dortmund

The Impact of A Priori Knowledge: Example (2)

Attacker's updated view on original instance r:

R	SSN	Name	Illness	HurtBy	Doctor
	?	Hellmann	Borderline	?	White
	?	Dooley	?	?	Warren
	?	McKinley	?	?	Warren
	?	McKinley	?	?	Warren

Suppose attacker knows a priori:

"All patients suffering from Borderline have hurt themselves."

As a sentence of \mathscr{L} : $(\forall X_S)(\forall X_N)(\forall X_H)(\forall X_D) [R(X_S, X_N, \text{BLine}, X_H, X_D) \Rightarrow (X_N \equiv X_H)]$

Attacker's updated view on r violates $c_3 = {\text{Name, HurtBy}}$:

R	SSN	Name	Illness	HurtBy	Doctor
	?	Hellmann	Borderline	Hellmann	White

About Inference-Proofness and A Priori Knowledge

Inference-Proofness: From attacker's point of view

- For each potential secret $\Psi_i(\mathbf{v}_i) \in ex(potsec(\mathcal{C}))$
- Existence of alternative instance r' over $\langle R|A_R|SC_R\rangle$ possible
 - r' is indistinguishable from original instance r
 - r' does not satisfy $\Psi_i(\mathbf{v}_i)$

About a priori knowledge prior

- Contains sentences over predicate symbols R and \equiv
- Attacker knows: Original instance r satisfies prior
- ► Consequently: Each r' also needs to satisfy prior

technische universität dortmund

Towards Inference-Proofness of Alternative Instance

Create inference-proof alternative instance r' w.r.t.

- Single potential secret $\Psi_i(\mathbf{v}_i)$ with $\mathbf{v}_i = (v_{i_1}, \dots, v_{i_\ell})$
 - Attacker knows from $f_1: \pi_{(A_{F_1} \setminus \mathcal{E})}(r)$
 - ▶ Choose $m \in \{i_1, \ldots, i_\ell\}$ s.t. $a_m \notin (A_{F_1} \setminus \mathcal{E})$ (i.e. $a_m \in \overline{A}_{F_2}$)
 - ▶ Make sure: Column a_m of r' does not contain $v_m \in v_i$

▶ Syntactically restricted sentence $\Gamma \in prior$ over R and \equiv

- Attacker knows: Γ is satisfied by r
- Adopt all columns $\{a_1, \ldots, a_n\} \setminus \{a_m\}$ of r to construct r'
- Ensure that Γ does not require
 - Constant v_m to be in m-th column
 - Equality between column m and other column

Database Fragmentation with Encryption: Can Two Keep a Secret?
Inference-Proofness of Fragmentation
Inference-Proofness under A Priori Knowledge

A Priori Knowledge and Multiple Potential Secrets

Consider example set C within $\langle R|A_R|SC_R\rangle$

R	SSN	Name	Illness	HurtBy	Doctor
<i>c</i> 1	×				
c2		х	х		
c3		х		x	
C4			x	×	

• Columns Name and Doctor known from f_1

 \rightarrow Do \boldsymbol{not} modify to preserve indistinguishability

- For each Ψ_i(v_i): To be able to construct r' protecting Ψ_i(v_i) at least one column of c_i must be modifiable
- Each $\Gamma \in prior$ must comply with all modifiable columns
 - ▶ In each $(\neg)R(...)$ of Γ : No constants in modifiable columns
 - No equalities expressed by variables between modifiable and non-modifiable columns

technische universität

LInference-Proofness under A Priori Knowledge

Definition of A Priori Knowledge

Each $\Gamma \in prior$ is built s.t.

- ► Γ has form $(\forall \mathbf{x})(\exists \mathbf{y})[\bigvee_{j=1,...,p} \neg R(t_{j,1},...,t_{j,n}) \lor A_{p+1}]$
 - A_{p+1} is either $(t_{p+1,1} \equiv t_{p+1,2})$ or $\bigwedge_{j=p+1,...,q} R(t_{j,1},...,t_{j,n})$
 - Each t_{j,i} is a variable or a constant symbol
- Γ is range-restricted: Each $X \in x$ occurs in a $\neg R(...)$
- Γ is not DB-tautologic: No $Y \in \mathbf{y}$ occurs in a $\neg R(\ldots)$

Definition of A Priori Knowledge

Moreover: prior must comply with "modifiable columns" There exists a subset $M \subseteq \{h+1, \ldots, n\}$ s.t. (1) $M \cap \{i_1, \ldots, i_\ell\} \neq \emptyset$ for each $c_i = (a_{i_1}, \ldots, a_{i_\ell}) \in C$ (2) For each $\Gamma \in prior$ exists a partioning $\mathcal{X}_1^{\Gamma} \stackrel{.}{\cup} \mathcal{X}_2^{\Gamma} = Var$ s.t. (i) For each atom $R(t_1, \ldots, t_n)$ of Γ For $j \notin M$: term t_j is either a (quantified) variable of \mathcal{X}_1^{Γ} or a constant symbol of Dom For $j \in M$: term t_i is a (quantified) variable of \mathcal{X}_2^{Γ} (ii) For each atom $(X_i \equiv X_i)$ of Γ : Either $X_i, X_i \in \mathcal{X}_1^{\Gamma}$ or $X_i, X_i \in \mathcal{X}_2^{\Gamma}$ (iii) For each atom $(X_i \equiv v)$ of Γ with $v \in Dom$: Variable X_i is in \mathcal{X}_1^{Γ}

Database Fragmentation with Encryption: Can Two Keep a Secret?
Inference-Proofness of Fragmentation
Inference-Proofness under A Priori Knowledge

Coarse Sketch of Proof

To be shown: for all $\Psi(\mathbf{v}) \in ex(potsec(\mathcal{C}))$: $db_{f_1} \cup db_R \cup prior \not\models_{DB} \Psi(\mathbf{v})$

Steps of proof:

- 1. Choose $ilde{\Psi}(oldsymbol{
 u})\in \mathsf{ex}(\mathit{potsec}(\mathcal{C}))$ arbitrarily
- 2. Construct a DB-Interpretation $\mathcal{I}_{r'}$ with

$$\mathcal{I}_{r'} \models_M \begin{cases} db_{f_1} \\ db_R \\ prior \end{cases}$$
 (Indistinguishability)

 $\mathcal{I}_{r'} \not\models_M ilde{\Psi}(\mathbf{v})$ (Non-violation of potential secret)

Creation of Appropriate Fragmentation

Alternative Fragmentation of Example Instance

R	SSN	Name	Illness	HurtBy	Doctor
	1234	Hellmann	Borderline	Hellmann	White
	2345	Dooley	Laceration	McKinley	Warren
	3456	McKinley	Laceration	Dooley	Warren
	3456	McKinley	Concussion	Dooley	Warren

F ₁	tid	SSN	Illness	HurtBy	Doctor		F2	tid	SSN	HurtBy	Name
	1	e_{S}^{1}	Borderline	e _H ¹	White	_		1	κ_{S}^{1}	κ^{1}_{H}	Hellmann
	2	e_{s}^{2}	Laceration		Warren			2	κ^2_{s}	κ ² Η	Dooley
	3	e3	Laceration	e ³ _H	Warren			3	κ_{S}^{3}	κ ³ Η	McKinley
	4	e 4	Concussion	e ⁴ H	Warren			4	$\kappa_{S}^{\tilde{4}}$	⁴ К Н	McKinley

is confidential w.r.t.

technische universität dortmund

A Priori Knowledge under Alternative Fragmentation

Attacker's view on <i>r</i> k	based on	f_1 :
-------------------------------	----------	---------

R	SSN	Name	Illness	HurtBy	Doctor
	?	?	Borderline	?	White
	?	?	Laceration	?	Warren
	?	?	Laceration	?	Warren
	?	?	Concussion	?	Warren

Suppose attacker knows a priori:

1. $(\forall X_S)(\forall X_N)(\forall X_I)(\forall X_H) [R(X_S, X_N, X_I, X_H, \text{White}) \Rightarrow (X_I \equiv \text{BLine})]$ 2. $(\forall X_S)(\forall X_N)(\forall X_H)(\forall X_D) [R(X_S, X_N, \text{BLine}, X_H, X_D) \Rightarrow (X_N \equiv X_H)]$

A Priori Knowledge is harmless (though premises satisfied)

- 1. Association Doctor \leftrightarrow Illness already known from f_1
- 2. For neither X_N nor X_H a constant is known

About the Creation of Appropriate Fragmentations

As seen in example: Given $\langle R|A_R|SC_R\rangle$, C and prior Some fragmentations achieve inference-proofness, others do not

Task: Create inference-proof fragmentation for given setting

- Can be modelled as Binary Integer Linear Program
- Optimization Goal: Minimize number of "encrypted attributes"
- Solver outputs feasible solution iff Inference-proof fragmentation exists

Conclusion and Future Work

Conclusion and Future Work

What has been achieved?

- Existing approach to confidentiality by fragmentation is
 - Modelled logic-orientedly within CIE-framework
 - Extended by attacker's a priori knowledge
- Within modelling: Formal proof of inference-proofness
- Algorithm for computing inference-proof fragmentations

What might be done in future?

- Extending feasible a priori knowledge
 - \rightarrow Sufficient & necessary condition
- Analyzing other approaches to confidentiality by fragmentation

That's all...

Thank you for your attention!