

Inference-Proof Data Publishing by Minimally Weakening a Database Instance

Joachim Biskup Marcel Preuß

Information Systems and Security (ISSI)

Technische Universität Dortmund, Germany

October 13, 2014

Table of Contents

Context of this Work

Motivating this Work Basics of Relational Databases

Inference-Proof Weakenings

Some Thoughts about Easy Cases Treating Non-Simple Confidentiality Policies The Inference-Proof Weakening Algorithm

Extending the Approach

A More Expressive Confidentiality Policy Introducing A Priori Knowledge

Conclusion & Future Work

└─ Motivating this Work

Inference-Proof Data Publishing

Nowadays: Data publishing is ubiquitous

- Governments and companies provide data
- People share data about their private lifes

But: Original data often contains sensitive (personal) information

- Set up a confidentiality policy
- Release only "inference-proof views" of original data
 - No information to be protected is revealed
 - Even if an adversary tries to deduce inferences

Basics of Relational Databases

Supposed Database Setting

Relational schema $\langle R | A_R | \emptyset \rangle$

- Relational symbol R
- Attribute set $A_R = \{A_1, \ldots, A_n\}$
- No database constraints declared (for now)
- Infinite set Dom of constant symbols

Complete relational instance *r* over $\langle R | A_R | \emptyset \rangle$

- Finite number of valid database tuples over Dom
- CWA: Each constant combination not contained in r is invalid
 - Infinite number of invalid tuples
 - No constant combination is undefined

Basics of Relational Databases

First-Order Logic for Modeling Databases

Given first-order language ${\mathscr L}$ with equality

- Predicate symbol *R* with arity $|A_R| = n$
- Predicate symbol \equiv for expressing equality
- Infinite set Dom of constant symbols

Database-specific semantics: \mathcal{I} is DB-Interpretation, if

- Dom is the universe of \mathcal{I} and $\mathcal{I}(v) = v$ for each $v \in Dom$,
- *R* interpreted by finite $\mathcal{I}(R) \subset Dom^n$,
- ▶ ≡ interpreted by $\mathcal{I}(\equiv) = \{(v, v) \mid v \in Dom\}$

└─ Basics of Relational Databases

Logic-Oriented Modeling of Relational Instances

Given instance r:

+	_	R(a, b, c), R(a, c, c), R(b, a, c)
(a, b, c) (a, c, c) (b, a, c)	(a, a, a) (a, a, b) (a, a, c) \vdots	$(\forall X)(\forall Y)(\forall Z) [(X \equiv a \land Y \equiv b \land Z \equiv c) \lor (X \equiv a \land Y \equiv c \land Z \equiv c) \lor (X \equiv b \land Y \equiv a \land Z \equiv c) \lor (X \equiv b \land Y \equiv a \land Z \equiv c) \lor \neg R(X, Y, Z)]$
]

Idea of logic-oriented modeling:

- Each valid tuple as corresponding ground atom
- Infinite set of invalid tuples as completeness-sentence
 - List all tuples which are not invalid $(\rightarrow$ Finite set)
 - All other tuples are invalid $(\rightarrow \text{Infinitely many})$

Basics of Relational Databases

Confidentiality Policy

Confidentiality policy psec

- Finite set of potential secrets
- ▶ Potential secret: Ground atom R(c) with $c \in Dom^n$

Semantics of potential secret $\Psi \in psec$

- If Ψ is valid in r: Adversary **must not** get to know this
- Otherwise: Adversary may know that Ψ is invalid in r

Assume: Adversary is aware of policy

Some Thoughts about Easy Cases

Definition of Inference-Proofness

Given:

- Complete original instance r over $\langle R | A_R | \emptyset \rangle$
- Confidentiality policy psec
- Weakening algorithm weak (r, psec)

Inference-Proofness: From adversary's point of view

- For each potential secret $\Psi \in \textit{psec}$
- Existence of complete alternative instance r^{Ψ} over $\langle R | A_R | \emptyset \rangle$
 - r^{Ψ} does **not** satisfy Ψ
 - r^{Ψ} is indistinguishable from original instance r
 - \rightarrow weak (r^{Ψ} , psec) = weak (r, psec)

-Interence-Proof vveakenings

└─Some Thoughts about Easy Cases

Case Study 1: Given Setting

Policy:
$$psec = \{ \Psi_1 = R(a, b, c), \Psi_2 = R(a, c, c) \}$$

Original instance r:

Obviously: $\mathcal{I}_r \models_M \Psi_1$, $\mathcal{I}_r \models_M \Psi_2$

Inference-Proof Data Publishing by Minimally Weakening a Database Instance

Inference-Proof Weakenings

Some Thoughts about Easy Cases

tu technische universität dortmund

Case Study 1: Weakening

Policy:
$$psec = \{ \Psi_1 = R(a, b, c), \Psi_2 = R(a, c, c) \}$$

Weakening weak(r, psec):

$$\begin{array}{c|c}
+ & - \\
\hline
(a, b, c) & (a, a, a) \\
\hline
(a, c, c) & (a, a, b) \\
(b, a, c) & (a, a, c) \\
& \vdots \\
\end{array}$$

Disjunctive knowledge: $R(a, b, c) \lor R(a, c, c)$

$$R(b, a, c)$$

$$R(a, b, c) \lor R(a, c, c)$$

$$(\forall X)(\forall Y)(\forall Z) [$$

$$(X \equiv a \land Y \equiv b \land Z \equiv c) \lor$$

$$(X \equiv a \land Y \equiv c \land Z \equiv c) \lor$$

$$(X \equiv b \land Y \equiv a \land Z \equiv c) \lor$$

$$\neg R(X, Y, Z)]$$

Achievement: weak $(r, psec) \not\models_{DB} \Psi_1$, weak $(r, psec) \not\models_{DB} \Psi_2$

tu technische universität dortmund

Case Study 1: Alternative Instance Protecting Ψ_1

Policy:
$$psec = \{ \Psi_1 = R(a, b, c), \Psi_2 = R(a, c, c) \}$$

Alternative instance r^{Ψ_1} from adversary's POV:

i

$$\begin{array}{c|c} + & - \\ & (a, a, a) \\ (a, c, c) & (a, a, b) \\ (b, a, c) & \vdots \\ & (a, b, c) \\ & \vdots \end{array}$$
Question: Is r^{Ψ_1} credible from adversary's POV?

Adversary's view: $\mathcal{I}_{r^{\Psi_1}} \not\models_M \Psi_1$, $\mathcal{I}_{r^{\Psi_1}} \models_M \Psi_2$

Some Thoughts about Easy Cases

technische universität dortmund

Case Study 1: Indistinguishability of Instance r^{Ψ_1} Policy: $psec = \{ \Psi_1 = R(a, b, c), \Psi_2 = R(a, c, c) \}$

Adversary's simulation of weak $(r^{\Psi_1}, psec)$:

Disjunctive knowledge: $R(a, b, c) \lor R(a, c, c)$

 r^{Ψ_1} and r are indistinguishable: $weak(r^{\Psi_1}, psec) = weak(r, psec)$

tu technische universität dortmund

Case Study 1: Alternative Instance Protecting Ψ_2

Policy:
$$psec = \{ \Psi_1 = R(a, b, c), \Psi_2 = R(a, c, c) \}$$

Alternative instance r^{Ψ_2} from adversary's POV:

i.

+-
$$(a, b, c)$$
 (a, a, a) Question: Is r^{Ψ_2} credible from
adversary's POV? (b, a, c) \vdots Again: Simulation of
 $weak(r^{\Psi_2}, psec)$

Adversary's view: $\mathcal{I}_{r^{\Psi_2}} \models_M \Psi_1$, $\mathcal{I}_{r^{\Psi_2}} \not\models_M \Psi_2$

└─Some Thoughts about Easy Cases

Case Study 2: Given Setting

Policy:
$$psec = \{ \Psi_1 = R(a, b, c), \Psi_2 = R(a, b, d) \}$$

Original instance r:

+	-	R(a, b, c), R(a, c, c), R(b, a, c)
(a, b, c)	(a, a, a)	$(\forall X)(\forall Y)(\forall Z)$
(a, c, c)	(a, a, b)	$(X \equiv a \land Y \equiv b \land Z \equiv c) \lor$
(b, a, c)		$(X \equiv a \land Y \equiv c \land Z \equiv c) \lor$
	(a, b, d)	$(X \equiv b \land Y \equiv a \land Z \equiv c) \lor$
	:	$\neg R(X, Y, Z)$]

Obviously: $\mathcal{I}_r \models_M \Psi_1$, $\mathcal{I}_r \not\models_M \Psi_2$

Inference-Proof Data Publishing by Minimally Weakening a Database Instance

Inference-Proof Weakenings

Some Thoughts about Easy Cases

Case Study 2: Weakening Policy: $psec = \{ \Psi_1 = R(a, b, c), \Psi_2 = R(a, b, d) \}$ Weakening weak(r, psec):

$$\begin{array}{c|c}
+ & - \\
\hline
(a, b, c) & (a, a, a) \\
(a, c, c) & (a, a, b) \\
(b, a, c) & \vdots \\
\hline
(a, b, d) \\
\vdots
\end{array}$$

Disjunctive knowledge:

R(a, c, c), R(b, a, c) $R(a, b, c) \lor R(a, b, d)$ $(\forall X)(\forall Y)(\forall Z) [$ $(X \equiv a \land Y \equiv b \land Z \equiv c) \lor$ $(X \equiv a \land Y \equiv b \land Z \equiv d) \lor$ $(X \equiv a \land Y \equiv c \land Z \equiv c) \lor$ $(X \equiv b \land Y \equiv a \land Z \equiv c) \lor$ $\neg R(X, Y, Z)]$

 $R(a, b, c) \lor R(a, b, d)$

Achievement: weak $(r, psec) \not\models_{DB} \Psi_1$, weak $(r, psec) \not\models_{DB} \Psi_2$

technische universität

Some Thoughts about Easy Cases

Case Study 3: The Easy Case

Policy:
$$psec = \{ \Psi_1 = R(a, a, a), \Psi_2 = R(a, a, b) \}$$

Original instance r:

$$\begin{array}{c|c} + & - \\ \hline (a, b, c) & (a, a, a) \\ (a, c, c) & (a, a, b) \\ (b, a, c) & (a, a, c) \\ & \vdots \end{array}$$

Nothing to weaken!

Neither Ψ_1 nor Ψ_2 need to be protected.

$$\rightarrow$$
 weak (r, psec) := r

Obviously: $\mathcal{I}_r \not\models_M \Psi_1$, $\mathcal{I}_r \not\models_M \Psi_2$

Treating Non-Simple Confidentiality Policies

Clustering of Non-Simple Policies (1)

How to deal with non-simple policies of an arbitrary size?

- Partition the policy into a set of disjoint clusters
- ▶ For each cluster C: Construct disjunction $\bigvee_{\Psi \in C} \Psi$

How to achieve only meaningful disjunctions?

- Declare a set of admissible clusters
 - \rightarrow Employ high level languages such as SQL
- ► Goal: Each admissible disjunction should be well-balanced
 - Provide as much useful information as possible
 - All alternatives provided should be equally probable
- Only admissible clusters allowed in final disjoint clustering

Treating Non-Simple Confidentiality Policies

Clustering of Non-Simple Policies (2)

How to balance availability and confidentiality requirements?

- ► Size of cluster C induces length of disjunction \V_{Ψ∈C}Ψ
- In the following: Goal is to maximize availability
 - Keep size of clusters as small as possible
 - ► Only one alternative instance per potential secret required → Clusters of size 2 comply with security definition

└─ Treating Non-Simple Confidentiality Policies

(Partitioning)

Preparing the Clustering Algorithm

Requirements for clustering summarized

- 1. Each cluster is of size 2 (Maximizing availability)
- 2. Each cluster is admissible (Meaningful clusters)
- 3. Different clusters are pairwise disjoint
- 4. Each policy element is in a cluster

How to implement this efficiently on the operational level?

Model all admissible clusters within simple and undirected **Indistinguishability-Graph** G = (V, E) with

- ▶ V := psec
- $E := \{ \{ \Psi_1, \Psi_2 \} \in V \times V \mid \Psi_1 \lor \Psi_2 \text{ is admissible} \}$

Treating Non-Simple Confidentiality Policies

First Idea for Clustering Algorithm

Compute maximum matching M on indistinguishability-graph G

- ► $M \subseteq E$ is a matching on G, if each pair of different $\{\Psi_1, \Psi_2\}, \{\overline{\Psi_1}, \overline{\Psi_2}\} \in M$ is disjoint
- *M* is maximum if there is no matching *M*' with |M'| > |M|
- Is a maximum matching M on G the wanted clustering?
 - 1. Each cluster is of size 2 ✓
 - 2. Each cluster is admissible √
 - 3. Different clusters are pairwise disjoint ✓
 - There may be policy elements not contained in a cluster (Although matching is maximum)

└─ Treating Non-Simple Confidentiality Policies

Improved Idea for Clustering Algorithm

How to ensure that each policy element is in a cluster?

- Compute a maximum matching M
- Compute a matching extension M* of M
 - Initially: $M^* := M$
 - For each potential secret Ψ not covered by M
 - Create a suitable additional potential secret Ψ^A for Ψ
 - Add cluster $\{\Psi, \Psi^A\}$ to M^*

How to create a **suitable** additional potential secret Ψ^A for Ψ ?

- Create ground atom $\Psi^A = R(\mathbf{c})$
- Ensure that Ψ^A is not in the policy and not yet in M^*
- Ensure that $\Psi \lor \Psi^A$ would be admissible if Ψ^A was in policy

The Inference-Proof Weakening Algorithm

Creation of Weakened Instance

Assume: Clustering M_r^* is given s.t. for each cluster $\{\Psi_1, \Psi_2\}$ the original instance r satisfies Ψ_1 or Ψ_2

Construction of weakened instance weak (r, psec):

- ► Positive knowledge: Ground atom R(c) for each $c \in r$ with $R(c) \not\models_{DB} \Psi$ for each $\Psi \in \bigcup_{C \in M^*} C$
- ► Disjunctive knowl.: Disjunction $\Psi_1 \lor \Psi_2$ for each cluster $\{\Psi_1, \Psi_2\} \in M_r^*$
- Negative knowledge: Each constant combination neither in positive knowledge nor in a disjunction is not valid by completeness sentence

The Inference-Proof Weakening Algorithm

The Overall Algorithmic Approach

Algorithm to compute weakenings

Inputs: original instance r, confidentiality policy psec

- **Stage 1:** Clustering of potential secrets (independent of *r*)
 - Generate indistinguishability-graph G = (V, E) from *psec*
 - Compute maximum matching $M \subseteq E$ on G
 - Construct extended matching M* based on M
- **Stage 2:** Creation of weakened instance (dependent on *r*)
 - Create set of clusters with a policy element not obeyed by r: $M_r^* := \{ \{ \Psi_1, \Psi_2 \} \in M^* \mid \mathcal{I}_r \models_M \Psi_1 \text{ or } \mathcal{I}_r \models_M \Psi_2 \}$
 - Create weakened instance weak(r, psec) based on r and M_r^*

The Inference-Proof Weakening Algorithm

Example: Stage 2 of Weakening Algorithm Clustering: { {R(a, b, b), R(a, c, b)}, {R(a, b, c), R(a, b, d)} $\{R(b, b, b), R(b, b, e)\}, \{R(b, b, d), R(b, b, f)\}$ $\{R(c, a, a), R(c, a, b)^A\}$ Instance weak (r, psec): R(a, b, a)Instance r: $R(a, b, b) \vee R(a, c, b)$ $R(c, a, a) \vee R(c, a, b)$ $(\forall X)(\forall Y)(\forall Z)$ $(a, b, a) \mid (a, a, a)$ $(X \equiv a \land Y \equiv b \land Z \equiv a) \lor$ $(a, b, b) \mid (a, a, b)$ $(X \equiv a \land Y \equiv b \land Z \equiv b) \lor$ (a, c, b): $(X \equiv a \land Y \equiv c \land Z \equiv b) \lor$ (c, a, b) $(X \equiv c \land Y \equiv a \land Z \equiv a) \lor$ $(X \equiv c \land Y \equiv a \land Z \equiv b) \lor$ $\neg R(X, Y, Z)$

└─ The Inference-Proof Weakening Algorithm

Inference-Proofness: Sketch of Proof (1)

Consider arbitrary $\tilde{\Psi} \in psec$ Suppose: $\tilde{\Psi}$ is in cluster $\{\tilde{\Psi}, \tilde{\Psi}_I\}$

Case 1:
$$\mathcal{I}_r \not\models_M \tilde{\Psi} \lor \tilde{\Psi}_l$$

- Construct alternative instance $r^{\tilde{\Psi}} := r$
- $\blacktriangleright \ r^{\tilde{\Psi}} \text{ obeys } \tilde{\Psi}: \quad \mathcal{I}_{r^{\tilde{\Psi}}} \not\models_{M} \tilde{\Psi} \lor \tilde{\Psi}_{I} \quad \text{implies} \quad \mathcal{I}_{r^{\tilde{\Psi}}} \not\models_{M} \tilde{\Psi}$
- ► Indistinguishability: $r^{\tilde{\Psi}} = r$ by construction of $r^{\tilde{\Psi}}$ $\rightarrow weak(r^{\tilde{\Psi}}, psec) = weak(r, psec)$

└─ The Inference-Proof Weakening Algorithm

Inference-Proofness: Sketch of Proof (2)

Case 2: $\mathcal{I}_r \models_M \tilde{\Psi} \lor \tilde{\Psi}_l$

- ▶ Construct alternative instance $r^{ ilde{\Psi}} := (r \setminus {\{ ilde{\Psi}\}}) \cup {\{ ilde{\Psi}_l\}}$
- $r^{ ilde{\Psi}}$ obeys $ilde{\Psi}$: $\mathcal{I}_{r^{ ilde{\Psi}}}
 eq _{\mathcal{M}} ilde{\Psi}$ by construction of $r^{ ilde{\Psi}}$
- ► Indistinguishability: For each cluster $\{\Psi, \Psi_I\}$: $\mathcal{I}_{r^{\tilde{\Psi}}} \models_M \Psi \lor \Psi_I$ iff $\mathcal{I}_r \models_M \Psi \lor \Psi_I$
 - $\blacktriangleright \ \, \text{For cluster} \ \{\tilde{\Psi},\tilde{\Psi}_I\}: \quad \mathcal{I}_{r^{\tilde{\Psi}}}\models_M \tilde{\Psi} \vee \tilde{\Psi}_I \quad \text{by construction of} \ r^{\tilde{\Psi}}$
 - ► For each other $\{\Psi, \Psi_I\}$: $\mathcal{I}_{r^{\bar{\Psi}}} \models_M \Psi \lor \Psi_I$ iff $\mathcal{I}_r \models_M \Psi \lor \Psi_I$ by construction of $r^{\bar{\Psi}}$ and by disjoint clusters $\rightarrow weak(r^{\bar{\Psi}}, psec) = weak(r, psec)$

└─ The Inference-Proof Weakening Algorithm

Experimental Evaluation of Approach

About the prototype implementation

- Sample indistinguishability criterion based on local distortion
- Graph constructed with a flavor of merge-join algorithm
- Boost-Library employed for maximum matching computation

Lessons learned from evaluation of prototype

- Algorithm can handle instances and policies of realistic size
- Runtime of Stage 2 is negligible
- Runtime of Stage 1 is dominated by matching computation
- Stage 1 is significantly faster with matching heuristic → Slight loss of availability (→ more unmatched vertices)

Extending the Approach

Extending the Approach

A More Expressive Confidentiality Policy

Existentially-Quantified Atoms as Potential Secrets

Now: Improve expressiveness of potential secrets

Existentially quantified atoms like $(\exists \mathbf{X}) R(t_1, \ldots, t_n)$ in policy

- Each t_i is either a constant of Dom or a variable of X
- Each variable is existentially quantified
- Each variable occurs only once in t_1, \ldots, t_n

New difficulty arising: Too strong formulas

- Consider: $R(a, b, c) \lor (\exists X) R(a, b, X)$
- Adversary must believe R(a, b, c) to protect $(\exists X) R(a, b, X)$
- ▶ But: R(a, b, c) directly implies $(\exists X) R(a, b, X)$ *4*

- Extending the Approach

A More Expressive Confidentiality Policy

Cleaned Confidentiality Policy

Avoid too strong formulas by cleaning the policy

- Identify a maximum subset of logically weakest sentences (Without semantically equivalent sentences)
- Remove all other sentences from policy

Properties of cleaned confidentiality policy

- ► All alternatives provided by disjunctions are weakest sentences of policy → Do not imply other sentences of (original) policy
- Knowledge protected by removed stronger sentences is still protected by remaining weaker sentences

Extending the Approach

Introducing A Priori Knowledge

A Basic Kind of A Priori Knowledge

Usually: Adversary also has some a priori knowledge

- Set of sentences prior (containing database constraints)
- Original instance r must satisfy prior
- prior must not imply a sentence of the confidentiality policy

New difficulty arising: Each alternative instance must also satisfy *prior* to be credible

So far: Inference-proofness under *prior* of ground atoms R(c)

- ▶ R(c) satisfied by original instance ▶ R(c) does not imply a $\Psi \in psec$ $R(\mathbf{c})$ as **atom** in weakening
- Atoms of (positive part of) weakening in alternative instances

Conclusion & Future Work

Conclusion & Future Work

Our contribution:

- Approach creating inference-proof materialized views
- ► Therefore: Replace some definite information by disjunctions
- Limited expressiveness \rightarrow Efficient computation

Possible future work:

- Commonly used database constraints as a priori knowledge
 → Equality/Tuple Generating Dependencies
- Guarantee a certain number of k > 2 different "secure" alternative instances for each potential secret
- Elaborate connection to k-anonymity/ ℓ -diversity