Inference-Proof Materialized Views

Doctoral Examination

Marcel Preuß

Information Systems and Security (ISSI)

Technische Universität Dortmund, Germany

August 24, 2016
Context of this Work
Inference-Proof Data Publishing

Nowadays: Data publishing is ubiquitous
- Governments and companies provide data
- People share data about their private lives

But: Original data often contains sensitive (personal) information
- Set up a confidentiality policy
- Release “secure views” instead of original data
 - Do not reveal any confidential information
 - Consider adversary’s abilities to infer information
Framework and Goal

Framework: Relational model relying on first-order logic

- Complete original instance \(r \) (definite knowledge: \(+/−\))
- Confidentiality policy \(psec \) of potential secrets
 \((\exists X) R(X, c) \) s.t. each variable \(X \) occurs only once
- Adversary is aware of policy and protection mechanism

Goal: Enforce policy **efficiently** by weakened view on \(r \) s.t.

- Weakened view \(weak(r, psec) \) contains only true knowledge
- Inference-proofness from adversary’s point of view:
 For each \(\Psi \in psec \) there is a “secure” alternative instance \(r^\Psi \)
 - \(r^\Psi \) does **not satisfy** \(\Psi \)
 - \(r^\Psi \) is **indistinguishable** from original instance \(r \)
 \(\rightarrow weak(r^\Psi, psec) = weak(r, psec) \)
Confidentiality by Weakening
Construction of Weakened Views

Stage 1: Disjoint disjunction templates \((\text{independent of } r)\)

- Partition the policy \(\text{psec}\) into disjoint clusters \(C_1, \ldots, C_q\) (inducing disjunction templates) of a certain minimum size
- If necessary: Construct additional potential secrets

Stage 2: Weakened view \(\text{weak}(r, \text{psec})\) \((\text{dependent on } r)\)

- Keep each tuple of \(r\) not satisfying any \(\Psi \in C_i\)
- Introduce each disjunction \(\bigvee_{\Psi \in C_i} \Psi\) satisfied by \(r\)
- Knowledge not satisfying kept tuples or disjuncts is negative

\(\rightarrow\) Three classes of knowledge: +, ∨, −
Inference-Proofness by Isolation

Structure of weakened views:

\[
\begin{align*}
+ & \quad R(c_1), R(c_2), \ldots, R(c_p) \\
& \quad \downarrow R(c_i) \not\models_{DB} \Psi_{j,\ell} \\
\lor & \quad \Psi_{1,1} \lor \ldots \lor \Psi_{1,k_1} \quad \ldots \quad \Psi_{m,1} \lor \ldots \lor \Psi_{m,k_m} \\
& \quad \uparrow \neg R(d_i) \not\models_{DB} \neg \Psi_{j,\ell} \\
- & \quad \neg R(d_1), \neg R(d_2), \neg R(d_3), \ldots
\end{align*}
\]

(definite knowl.)

Hence: For each \(\Psi \in \Psi_{i,1} \lor \ldots \lor \Psi_{i,k_i}\) alternative instance \(r^{\Psi}\) with

\[
\begin{align*}
& \quad r^{\Psi} \not\models_M \Psi \quad \checkmark \\
& \quad r^{\Psi} \models_M +, \lor, - \quad \leadsto \text{indistinguishability by construction of weakened views} \quad \checkmark
\end{align*}
\]

but: \(r^{\Psi} \models_M \Psi_{i,1} \lor \ldots \lor \Psi_{i,k_i}\)
About the Clustering of Policy Elements

Desired properties for disjoint disjunction templates
- Credibility of all disjuncts \implies confidentiality
- Semantically meaningful \implies availability
- Certain length \implies level of confidentiality/availability

Desired properties for disjoint clustering of policy elements
- Consider (high-level) specification of admissible clusters
 \implies Depends on application scenario
- Each cluster must have a certain (minimum) size k^*
- Minimize number of additional potential secrets

Clustering problem is NP-hard for $k^* \geq 3$ (Reduction of X3C)
Efficient Clustering for $k^* = 2$ (1)

Model all admissible clusters within simple and undirected Indistinguishability Graph $G = (V, E)$ with:

- $V := \{ \Psi \in \text{psec} \mid \Psi \text{ is to be clustered} \}$
- $E := \{ \{\Psi, \Psi'\} \mid \Psi \lor \Psi' \text{ is admissible} \}$
Efficient Clustering for $k^* = 2$ (2)

Compute **maximum matching** on indistinguishability graph

- Matching: Subset of pairwise vertex-disjoint edges
- Induces set of disjoint and admissible disjunction templates
Efficient Clustering for $k^* = 2$ (3)

How to handle policy elements not covered by the matching?

- Pair with *additional* (artificial) potential secrets
- Minimum number of these due to maximum matching
Inference-Proofness under A Priori Knowledge
Introducing A Priori Knowledge

Usually: Adversary also has some a priori knowledge \(\textit{prior} \)

Challenge for inference-proofness: “secure” alternative instance \(r^{\Psi} \)
- \(r^{\Psi} \) does \textbf{not satisfy} \(\Psi \)
- \(r^{\Psi} \) is \textbf{indistinguishable} from original \(r \)
- \(r^{\Psi} \) satisfies \textit{prior}

Assumed \textit{prior}: “Single Premise TGDs” of the form

\[
\Gamma := (\forall X) \left[R(X, c_1) \Rightarrow (\exists Y) R(X, Y, c_2) \right] \quad \text{s.t.}
\]
- each \(X \) occurs only once in \(\text{prem}(\Gamma) \) and
- each \(X, Y \) occurs only once in \(\text{concl}(\Gamma) \)
Confidentiality Compromising Dependencies

Semantics of Single Premise TGDs: (also via transitive chains)

- Existent DB-Tuple \Rightarrow Existence of other DB-Tuple
- Non-Existent DB-Tuple \Rightarrow Non-Existence of other DB-Tuple

Broken isolation in weakened views:

\[
\begin{align*}
+ & \quad R(c_1), R(c_2), \ldots, R(c_p) \quad \text{(definite knowl.)} \\
\lor & \quad \Psi_{1,1} \lor \ldots \lor \Psi_{1,k_1} \ldots \Psi_{m,1} \lor \ldots \lor \Psi_{m,k_m} \\
- & \quad \neg R(d_1), \neg R(d_2), \neg R(d_3), \ldots \quad \text{(definite knowl.)}
\end{align*}
\]
Re-Establishing Sufficient Isolation (1)

Handling of dependency Γ interfering with policy elements

- Add policy elements protecting $\text{prem}(\Gamma)$ and $\text{concl}(\Gamma)$
 \rightarrow Do not reveal satisfaction-status of premise or conclusion

- Attention: New policy elements \rightsquigarrow further interferences

Problem: Disjunctions do not always guarantee distortion of non-satisfaction of conclusions

Only escape: Resort to distortion by complete refusal 😞
Re-Establishing Sufficient Isolation (2)

Inference-channel within disjunctive knowledge:

\[\Psi_1 \lor \Psi_2 \models_{DB} \text{prem} (\Gamma_1)[\sigma_1] \Rightarrow \text{concl} (\Gamma_1)[\sigma_1] \]
\[\models_{DB} \text{prem} (\Gamma_2)[\sigma_2] \Rightarrow \text{concl} (\Gamma_2)[\sigma_2] \]

How to eliminate this kind of inference-channel?

- Partitioning of prior s.t. \(\Gamma_1 \) and \(\Gamma_2 \) in same partition, if
 - their conclusions imply the same \(\Psi \) (under some \(\sigma_1, \sigma_2 \)) or
 - they can possibly form a transitive chain
- Do not construct disjunction, if all disjuncts imply a premise of the same partition
Conclusion & Future Work
Conclusion & Future Work

Main contributions:

- Confidentiality by cooperative weakening without lies
- Even if adversary employs Single Premise TGDs
- Efficient computation for disjunctions of length $k^* = 2$
- Without prior: Confidentiality level can provably be varied

Possible future work:

- Clustering algorithm for $k^* \geq 3$ (\rightarrow Reasonable heuristic)
- More expressive classes of a priori knowledge
- Proof for different levels of confidentiality under prior
- Model k-anonymity/ℓ-diversity within weakening approach
Backup Slides
Confidentiality by Weakening: Example (1)

Policy: \(\text{psec} = \{ \Psi_1 = R(a, b, c), \ \Psi_2 = R(a, b, d) \} \)

Complete original instance \(r \):

<table>
<thead>
<tr>
<th>+</th>
<th>−</th>
<th>(R(a, b, c)), (R(a, c, c)), (R(b, a, c))</th>
</tr>
</thead>
</table>
| \((a, b, c) \) | \((a, a, a) \) | \((\forall X)(\forall Y)(\forall Z) \) [\((X \equiv a \land Y \equiv b \land Z \equiv c) \lor \) \((X \equiv a \land Y \equiv c \land Z \equiv c) \lor \) \((X \equiv b \land Y \equiv a \land Z \equiv c) \lor \) \(\neg R(X, Y, Z) \)]
| \((a, c, c) \) | \((a, a, b) \) | \ |
| \((b, a, c) \) | : | \ |
| \((a, b, d) \) | : | \ |
| \(: \) | : | \ |

Obviously: \(r \) satisfies \(\Psi_1 \) (\(\rightarrow \) to be weakened)
Confidentiality by Weakening: Example (2)

Disjunction template: \(\Psi_1 \lor \Psi_2 = R(a, b, c) \lor R(a, b, d) \)

Weakened view \(\text{weak}(r, psec) \):

<table>
<thead>
<tr>
<th>+</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>((a, b, c))</td>
<td>((a, a, a))</td>
</tr>
<tr>
<td>((a, c, c))</td>
<td>((a, a, b))</td>
</tr>
<tr>
<td>((b, a, c))</td>
<td>:</td>
</tr>
<tr>
<td>((a, b, d))</td>
<td>:</td>
</tr>
</tbody>
</table>

Disjunctive knowledge:

\[
R(a, b, c) \lor R(a, b, d)
\]

Achievement: \(\text{weak}(r, psec) \) does neither imply \(\Psi_1 \) nor \(\Psi_2 \)
Isolation within Disjunctive Knowledge

Policy of only ground atoms: Isolation due to disjoint clustering

But: Existential quantification in policy can break up isolation

- Consider: $\Psi_1 \lor \Psi_2$ with $\Psi_1 \models_{DB} \Psi_2$
- Then: $\Psi_1 \lor \Psi_2 \models_{DB} \Psi_2$ reveals validity of Ψ_2
- Also harmful, if Ψ_1 and Ψ_2 stem from different disjunctions

How to re-establish isolation?

- Only weakest sentences of $psec$ may occur in disjunctions
 - No implication between disjuncts
- Stronger policy elements still implicitly protected
Experimental Evaluation for $k^* = 2$

About the prototype implementation

- Criterion for admissible disjunctions: “Interchangeability”
- “Boost”-library for maximum matchings on general graphs

Lessons learned from 5 experiment setups

- Algorithm efficiently handles input instances of realistic size
- Size and structure of $psec$ and $prior$ crucial for runtime
- Low number of additional potential secrets and refusals
 But: Admissibility criterion should fit to application scenario
- Parallelization: Doubling threads nearly halves runtime
- Clustering is significantly faster with matching heuristic
 → Only slight loss of availability