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Abstract. The transmission of own and partly confidential data to an-
other agent, e.g., for cloud computing, comes along with the risk of en-
abling the receiver to infer information he is not entitled to learn. We
consider a specific countermeasure against unwanted inferences about as-
sociations between data values whose combination of attributes are de-
clared to be sensitive. This countermeasure fragments a relation instance
into attribute-disjoint and duplicate-preserving projections such that no
sensitive attribute combination is contained in any projection. Though
attribute-disjointness is intended to make a reconstruction of original
data impossible for the receiver, the goal of inference-proofness will not
always be accomplished. In particular, inferences might be based on com-
binatorial effects, since duplicate-preservation implies that the frequen-
cies of value associations in visible projections equals those in the original
relation instance. Moreover, the receiver might exploit functional depen-
dencies, numerical dependencies and tuple-generating dependencies, as
presumably known from the underlying database schema. We identify
several conditions for a fragmentation to violate inference-proofness. Be-
sides complementing classical results about lossless decompositions, our
results could be employed for designing better countermeasures.
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1 Introduction

A data owner might consider to somehow fragment his relational data and to only
make the resulting fragments accessible to another agent, which, for a promi-
nent example, might offer some cloud services to the owner. Such a fragmentation
then aims at hiding some information about sensitive associations contained in
the original data to the service agent. Thus, though in principle being seen as
cooperating, the service agent is also perceived as potentially attacking the con-
fidentiality interests of the owner by attempting to infer hidden original informa-
tion from accessible data and, if applicable, additional background knowledge.
Accordingly, the data owner should carefully choose a fragmentation technique
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and thoroughly investigate whether the resulting fragmentation of his specific
data sufficiently satisfies his confidentiality interests.

Our considerations are motivated by the particular proposal of “combining
fragmentation and encryption to protect privacy in data storage” [14], a tech-
nique which converts a given relation instance and some confidentiality require-
ments on the schema level into a set of vertical relational fragments all of which
might be accessible for an attacker. We focus on three aspects of this proposal:

– The resulting fragmentation is attribute-disjoint, i.e., fragments do not share
attributes and thus seem to be unrelated. Moreover, regarding internal stor-
age and external display, the sequence of subtuple instances in a fragment is
supposed to be fully independent of the sequences in other fragments, and
of any sequence of tuple instances in the hidden data as well.

– Each fragment is duplicate-preserving and thus, for any values under at-
tributes in the fragment, their frequency (i.e., number of occurrences) in
the fragment is equal to their frequency in the hidden underlying relation
instance.

– The attacker might see all fragments, and thus he is supposed to take ad-
vantage of knowing several views on the same hidden data.

Focusing on the enforcement of confidentiality requirements by means of frag-
mentation, we will purposely ignore all cryptographic aspects and neglect the
details of reconstructability of the original data by the data owner. For further
simplifying our investigations, we will also assume that none of the attributes
get encrypted values:

– The fragmentation is full, i.e., it covers all attributes of the original relation.

For this setting, we will discuss various kinds of successful inference attacks
based on observable frequencies of visible data items and on additional back-
ground knowledge in the form of data dependencies and actual content data, in
spite of the attribute-disjointness at first glance generating unrelated fragments.
In doing so, we will present some fundamental assertions about such inferences,
together with some complexity considerations. The resulting main contribution
will be the identification of both the crucial role of frequencies and the challenge
to future research how to block their exploitation.

Example 1 (Fragmentation with encryption). This example illustrates the tech-
niques proposed by V.Ciriani et al [14] by means of a simple relational
schema Patient providing attributes Action, S(ocial)S(ecurity)N(umber),
(Patient)Name, Illness, (Prescribed) Medication, HurtBy, and (Treating)
Doctor to record a unique tuple instance for each medical action. Figure 1
shows a relation instance containing 4 tuple instances.
Suppose that the owner wants to hide values of the singleton attribute set {SSN},
and value combinations for associations expressed by the non-singleton at-
tribute sets {Name,Doctor}, {Name,Medication}, {Name,HurtBy}, and
{Illness,HurtBy}, respectively. Single values can only be protected by en-
cryption. But value combinations of a sensitive association can be handled by
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Patient Action SSN Name Illness Medication HurtBy Doctor
r1 1234 Hellmann Borderline MedA Hellmann White
r2 2345 Dooley Laceration MedB McKinley Waren
r3 3456 McKinley Laceration MedB Dooley Waren
r4 3456 McKinley Concussion MedC Dooley Waren

Fig. 1. A relation instance for the relational schema Patient

F1 Action Name
r2 Dooley
r4 McKinley
r3 McKinley
r1 Hellmann

F2 Illness Doctor
Laceration Waren
Borderline White
Concussion Waren
Laceration Waren

F3 Medication HurtBy
MedC Dooley
MedB Dooley
MedA Hellmann
MedB McKinley

Fig. 2. A simplified fragmentation (without encryption related parts needed for recon-
struction by the owner) of the relation instance of the schema Patient

fragmentation, i.e., by distributing the values occurring in an association among
different fragments obtained by projections without duplicate removal, under
the condition that the fragments do not overlap and, thus, are not obviously
linked. One possible option is to partition the attributes of the schema – in
this example except SSN – into the mutually disjoint sets {Action,Name},
{Illness,Doctor}, and {Medication,HurtBy}. Then, for each of them a
fragment is generated that makes the values of the attribute set visible and
stores the encryption of all remaining values under a new attribute, say Enc.
In principle, but no longer considered in the remainder, we would have to manage
the encrypted parts to enable the data owner to reconstruct the original tuple
instances. And we have to suitably scramble the (sub)tuple instances generated
for a fragment to block inferences based on their sequence displayed. A possible
result, simplified as indicated, is shown in Figure 2.

Unfortunately, however, though often being helpful, in this example the
attribute-disjointness does not guarantee the confidentiality requirements. In
fact, while the fragment instances to F1 and F2 contain 4 subtuple instances
each, there are 3 occurrences of the value “Waren” under the attribute Doc-
tor for F2 but only 2 occurrences of a value different from “McKinley” un-
der the attribute Name for F1. Hence, any matching of the fragment instances
must combine at least one of the occurrences of “Waren” with an occurrence of
“McKinley”. Thus, exploiting the visible frequencies of occurrences in the frag-
mentation, the occurrence of the value combination (McKinley,Waren) under
the attribute combination {Name,Doctor} in the hidden original relation in-
stance is inferrable, violating the confidentiality requirements. In general, besides
frequencies we would also have to consider the impact of data dependencies.

After briefly introducing basic definitions in Section 2, we will present and
discuss fundamental risks of harmful inferences by exploiting first only observable
frequencies (Section 3) and subsequently additionally background knowledge in
the form of data dependencies, in turn inspecting functional dependencies and
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more general numerical dependencies (Section 4) and finally tuple-generating
dependencies with a multivalued dependency as a special case (Section 5). In
the concluding Section 6, we point to related work, summarize our achievements,
outline future research on blocking inferences of the kind treated, and highlight
the connection of our study with the broader topics of inversion of database
queries and reasoning under uncertainty.

2 Basic Definitions

Abstracting from any application, ignoring encryption related parts and the
owner’s need for reconstruction, and assuming the covering of all attributes, our
investigations will treat fragmentations of the kind defined below using standard
terminology [1], together with their impact on the protection of associations.

Definition 1 (Full attribute-disjoint and duplicate-preserving frag-
mentation). Let (R(X),SC) be a relational schema with attribute set X and
data dependencies SC, and X = 〈X1, . . . , Xm〉 be a sequence of attribute sets
partitioning X, i.e., the sets Xi are nonempty and mutually disjoint subsets of
X such that X =

⋃
i=1,...,mXi. Then F = 〈F1(X1), . . . , Fm(Xm)〉 is the frag-

mentation schema derived from R(X) and X .
Furthermore, let r be a relation instance of (R(X),SC), i.e., a finite set of tu-

ples (without duplicates) over the attributes in X satisfying all data dependencies
in SC, containing n different tuples. Then, seen as an operator, the fragmenta-
tion schema F generates the fragmentation instance F(r) = 〈f1, . . . , fm〉 by
taking the projections of r on Xi, respectively, without removing duplicates and
then probabilistically scrambling the order of them regarding storage or display,
fi = π̄?

Xi
(r), such that each fragment instance fi has n subtuple instances1.

We emphasize that the setting of Definition 1 requires

– the absence of duplicates in original relation instances r (meant to be actually
stored under the relational schema (R(X),SC) on the one hand, and

– the suppression of duplicate removal when generating the fragmentation in-
stances by taking projections according to the fragmentation schema on the
other hand.

While the duplicate preservation under fragmentation is essential for the tech-
niques proposed by V.Ciriani et al [14], in an alternative approach, technically,
we could allow duplicates already in original relation instances. However, most
practical applications and both constraint-enforcement and query-answering
based on first-order logic usually assume set semantics rather than multiset se-
mantics for original relation instances and, accordingly, so do we.
1 Where appropriate and convenient, we distinguish between a tuple and a tuple in-

stance: we call an assignment of values to some attributes a tuple, whereas we refer
to an occurrence of a tuple as a tuple instance having in mind that a relation instance
allowing duplicates might contain multiple instances of the same tuple.
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Definition 2 (Syntactically protected association). Let F = 〈F1(X1), . . . ,
Fm(Xm)〉 be the fragmentation schema derived from a relational schema
(R(X),SC) and a sequence X of attribute sets partitioning X. Then an attribute
set C is an association syntactically protected by F iff C is a non-singleton
subset of X but not contained in any of the attribute sets Xi.

Unfortunately, as already mentioned before, the syntactic splitting condition
of Definition 2 might fail to ensure strong versions of confidentiality. In partic-
ular, an actually occurring value combination of an only syntactically protected
association might be inferrable by means of considering so-called matchings.

Definition 3 (Matching-inferrable value combination). Let F =
〈F1(X1), . . . , Fm(Xm)〉 be the fragmentation schema derived from a relational
schema (R(X),SC) and a sequence X of attribute sets partitioning X. Let
F(r) = f = 〈f1, . . . , fm〉 be the fragmentation instance generated from the rela-
tion instance r of (R(X),SC). Furthermore, let attribute set C be an association
syntactically protected by F . A subtuple µ over C is called a matching-inferrable
value combination iff it is generated by each SC-admissible matching M of the
subtuples in f .

Here, a matching is formed by iteratively taking one subtuple instance from
each fragment instance fi and combining them until the fragment instances (all
having the same number n of subtuple instances) are (simultaneously) exhausted.
In this way, a matching M generates a collection M(r) of n tuple instances –
possibly containing duplicates – over the attributes of X. Moreover, a matching
M is called SC-admissible if M(r) is an instance of (R(X),SC), i.e., a set (con-
taining no duplicates) satisfying all data dependencies in SC.

Remark 1. From an attacking observer’s point of view, a matching M can be
seen as one possibility to undo the unknown scrambling of subtuple instances
when the fragment instances have been generated. Some possibilities, however,
might produce duplicates or result in a violation of data dependencies, and thus
have to be discarded. Accordingly, if an attacker can find out that a subtuple µ
over an attribute set C is generated by all remaining SC-admissible possibilities,
he can conclude that this subtuple can be obtained by undoing the actually
employed scrambling and, thus, occurs in the hidden relation instance. Hence,
for a deliberately syntactically protected association C, such a subtuple would
be matching-inferrable: a successful inference from an attacker’s point of view,
but a security violation from the owner’s point of view.

Remark 2. More formally, if C is a deliberately syntactically protected associa-
tion, then an attacking receiver is suspected to be interested in the certain part
(formalized by intersection) of the projections on C of the relation instances r′ of
the schema (R(X),SC) contained in the inversion of the observed fragmentation
instance f = F(r) under the fragmentation schema F , i.e., to determine

F -1,C
SC (f) =

⋂
{πC(r′) | r′ is relation instance of (R(X),SC) and F(r′) = f}.
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For the attacker, a conceptual solution is given by the matching procedure
sketched above, due to the straightforward equation

F -1,C
SC (f) =

⋂
{πC(M(r)) |M(r) is formed from F(r) = f and SC-admissible }.

In contrast, the data owner would aim at assuring that the visible fragmentation
f does not allow any possibilistic inference, i.e., that F -1,C

SC (f) = ∅.

Remark 3. The data owner’s goal to ensure F -1,C
SC (f) = ∅ is also equivalent

to the notion of inference-proofness as employed by the concept of Controlled
Interaction Execution [6], under a confidentiality policy suitably expressing the
need to hide value combinations over C, as elaborated in [11,10]. Though without
referring to particular formal logic, and similarly as in an abstract version of
Controlled Interaction Execution [7], the goal roughly says that a suitable logic-
based formalization of the setting does not entail any sentence that logically
expresses the subtuple µ over C.

3 Frequency-Based Inferences without Dependencies

To start with, we briefly remind a classical result of the theory of relational
databases, see [1], that vertically decomposing a relation instance r – without
duplicates – into covering projections πXi

(r) for i = 1, . . . ,m – while remov-
ing duplicates – might be lossy, i.e., the (natural) join onj=1...m πXi

(r) of the
projections might be a strict superset of the original relation instance r. In this
case, in general an observer of the projections cannot decide whether a specific
tuple generated by the join is spurious, i.e., not contained in the original relation
instance. However, if the observer knows the original cardinality, he can easily
decide whether or not the join has produced spurious tuples, just by compar-
ing ||r|| with || onj=1...m πXi

(r) ||. Further we remind that for pairwise disjoint
attribute sets Xi the join on degenerates to the Cartesian product ×.

Lemma 1 (Matching-inferrable binary value combination). Let n be
the number of (sub)tuple occurrences in a relation instance r and the frag-
ment instances fi and fj, i 6= j, of a relational schema (R(X),SC) with
SC = ∅ (i.e., without data dependencies) and the fragmentation schema F =
〈F1(X1), . . . , Fm(Xm)〉, respectively. Furthermore, let C ⊆ Xi∪Xj be an associ-
ation syntactically protected by F . Consider any value combination µ = (µi, µj)
over C such that µl occurs in exactly cµl

many subtuple instances of fl, for
l ∈ {i, j}. Then, the following assertions hold:

1. If cµi
+ cµj

> n , then µ is matching-inferrable and has at least cµi
+ cµj

−n
occurrences in any matching M .

2. If cµi
+ cµj

≤ n and r is unique on X \ (Xi∪Xj), i.e., the projection of r on
X\(Xi∪Xj) would not produce duplicates, then µ is not matching-inferrable.
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Proof. 1. Assume cµi
+cµj

> n , and consider any matchingM . For the cµi
many

subtuple instances of fi containing µi there are at most n− cµj
many subtuple

instances in fj that do not contain µj . Hence cµi − (n− cµj ) = cµi + cµj −n ≥ 1
many of the former subtuple instances must be matched with a subtuple instance
of fj containing µj .
2. We have to show that there exists an SC-admissible matching M such that
M(r) is a set (without duplicates) not containing µ. If r itself does not contain
µ, then the matching that exactly undoes the fragmentation has the desired
properties. Otherwise, we can remove all occurrences of µ = (µi, µj) without
affecting the fragmentation result: for each tuple with such an occurrence we
exchange either the Xi- or the Xj-component with the respective component of
a tuple that contains neither µi nor µj . Such a tuple exists by the first assumption
that cµi + cµj ≤ n . Let then M be a matching such that M(r) generates the
result of all exchanges. By the uniqueness of r on X \ (Xi∪Xj) according to the
second assumption, M(r) has no duplicates. ut

Remark 4 (Impact of duplicate-free relation instances). Unfortunately, in
Lemma 1 the condition cµi

+ cµj
> n is not necessary for µ being matching-

inferrable, as witnessed by the following counterexample. Let X = {Ai, Aj} and
r = { (a, µj), (µi, µj), (a, b) } be a relation instance having n = 3 tuples with
a 6= µi and b 6= µj and, thus cµi

+ cµj
= 1 + 2 = 3 = n. Consider any matching

M of the fragments fi = {{ (a), (µi), (a) }} and fj = {{ (µj), (µj), (b) }} such that
M(r) does not contain µ = (µi, µj). ThenM combines µi with b and, thus, both
occurrences of µj with a, yielding duplicates. Hence, µ is matching-inferrable. In
contrast, the proof of Lemma 1, assertion 2 shows that the condition cµi+cµj > n
would be necessary if we allowed duplicates in original relation instances.

Theorem 1 (Existence of a matching-inferrable value combination).
Let n be the number of (sub)tuple instances in a relation instance r and the
fragment instances f = 〈f1, . . . , fm〉 of a relational schema (R(X),SC) with
SC = ∅ (i.e., without data dependencies) and the fragmentation schema F =
〈F1(X1), . . . , Fm(Xm)〉, respectively. Furthermore, let C ⊆ Xi1 ∪ · · · ∪Xik , with
P := { i |C∩Xi 6= ∅ } = {i1, . . . , ik} ⊆ {1, . . . ,m}, be an association syntactically
protected by F , and maxcil the maximal number of occurrences of a subtuple over
the attributes of C ∩Xil in fil , for l = i1, . . . , ik.
If 2 maxci1 + · · ·+maxcik > (k − 1) · n , then there exists a matching-inferrable
value combination µ = (µi1 , . . . , µik) over C ∩Xi1 ∪ · · · ∪ C ∩Xik .

Proof. For k = 2, the theorem is an immediate consequence of the first assertion
of Lemma 1. The general case can be proved by induction on k, exploiting the
induction hypothesis and again the first assertion of Lemma 1. ut

2 As discussed above, if we allowed duplicates in original relation instances, the con-
dition would also be necessary.
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4 Inferences with Numerical Dependencies

Even if we allowed duplicates in original relation instances, in general the con-
dition presented in Theorem 1 would not be necessary for a relational schema
(R(X),SC) with nontrivial data dependencies in SC such that certain sets of
tuple instances over X are not accepted as a relation instance of the schema.
In fact, a data dependency might relate the parts of an occurrence of a value
combination split among different fragments. Moreover, to exploit such a rela-
tionship for an inference attack sometimes the knowledge of the frequencies of
potentially combined parts is crucial.

In this section, we restrict our investigations to cardinality constraints in the
form of numerical dependencies which include functional dependencies as a spe-
cial case. We will consider the class of tuple-generating dependencies in the next
section. In this study, however, we neither intend to cover the full range of data
dependencies considered so far nor to relate the chosen examples exactly to the
various versions suggested in the literature. Rather, by means of examples seen
to be intuitively representative, we aim to demonstrate the issues of unwanted
and sometimes even unexpected inferences enabled by the knowledge of data
dependencies. Regarding the comprehensive class of data dependencies we refer
the reader to, e.g., the extensive surveys of the rich literature contained in the
textbooks [1,27] and a few original contributions [3,25,4,21,5,16,26,22,8] selected
out of many more works.

Example 2 (Functional dependency and frequencies). Consider the relation in-
stance of the schema Patient and the fragmentation shown in Figure 1 and
Figure 2, respectively. The relation instance satisfies the functional dependency
Medication → Illness. So, we now assume that this semantic constraint has
publicly been declared for the schema such that the attacking receiver holds only
those relation instances possible that satisfy this functional dependency. The
value “MedB” under attribute Medication occurs twice in the fragment instance
f3, and thus also in the hidden relation instance. By the semantic constraint, in
the hidden relation instance, both occurrences must appear in combination with
the same value under attribute Illness, which then must occur at least twice.
Since duplicates are preserved, this value must also occur at least twice in the
fragment instance f2. Only the value “Laceration” meets this requirement. Thus,
seeing the fragment instances and knowing the functional dependency enables
to infer that the value combination (Laceration, MedB) over the attribute set
{Illness,Medication} occurs in the hidden relation instance, though, in the
sense of Definition 2, this attribute set is an association syntactically protected
by the fragmentation and the condition of Lemma 1, assertion 1 is not satisfied.

The preceding example is captured by the following proposition. For the
sake of simplicity, it is expressed in terms of a functional dependency relating
two single attributes A and B of some schema with attribute set X. Evidently,
for the general case of a functional dependency relating two sets of attributes
Y ⊆ X and Z ⊆ X, a suitably adapted proposition holds as well.
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Proposition 1 (Inferences by equations on frequencies). For A,B ∈ X,
let (R(X), {A → B}) be a relational schema with the functional dependency
A → B as a single semantic constraint and r a relation instance containing n
different tuples. Furthermore, for each value a occurring in r under attribute A
let ca be the number of its occurrences and, similarly, for each value b occurring
in r under attribute B let cb be the number of its occurrences. Then, for all values
b occurring in r under attribute B the following equation holds:∑

a∈πA(σB=b(R))

ca = cb . (1)

Proof. Consider any value b occurring in r under attribute B. Then πA(σB=b(R))
is the set of all values a – without duplicates – such that (a, b) occurs in the
relation instance r of R. Each such value a occurs ca many times, and by the
functional dependency A→ B each occurrence is together with b. ut

If an attacker knows both the fragment fA showing the column A of r and the
fragment fB showing the column B of r, he can exploit the preceding proposition
in a straightforward way as follows. Seeing both fragments, the attacker also
knows all frequencies ca and cb. He can then simply attempt to solve the set of
equations derived from instantiating the equation (1) – with the relation symbol
R treated as the unknown item – to infer all possibilities for the hidden relation
instance r. If there is a unique solution, the attacker has completely inferred
the duplicate-preserving {A,B}-part of the hidden relation instance r from its
published fragments fA and fB . Even otherwise, all solutions might still coincide
for a particular value b whose combinations in the hidden relation instance r are
then revealed.

We can consider the attacker’s task as to solve the following variant of a
packing problem. We interpret each value b occurring under attribute B in fB
as a container having capacity cb, and each value a occurring under attribute A
in fA as a packet of size ca. Then the attacker has to find all pairs (a, b) that
appear in each possible allocation of the packets to the containers such that all
containers are completely filled, under the preconditions that (1) the sum over
the packet sizes equals the sum over the container capacities and (2) there exists
a solution, namely the one induced by the original relation instance.

Our variant is closely related to the NP-complete problem [SR1] BIN PACK-
ING described in [20], where k bins (containers) each of the same capacity B
should be filled with a finite set of items (packets) of given sizes. In our variant
the bins may have different capacities, the existence of a solution completely
filling all bins is known beforehand by the precondition, and we are interested
in the allocations common to all solutions. Moreover, another related problem
from the field of protection of statistical databases, [SR35] CONSISTENCY OF
DATABASE FREQUENCY TABLES, is listed in [20] as being NP-complete. For
this problem, a frequency refers to the number of occurrences of a pair of values
under any two different attributes; furthermore, knowledge about value combi-
nations is also not restricted to the content of a fragment. The problem then is
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Fig. 3. Three fragmentations (f i
A, f

i
B) of different relation instances of a schema with

functional dependency A→ B

to decide whether there exist unknown values supplementing the already known
ones such that the given frequencies are satisfied. Due to these relationships, we
expect that the attacker’s task will be of high computational complexity. This
expectation is also supported by the formal complexity analysis given in [7] and
other works in the field of confidentiality-preserving data publishing, elaborated
from the point of view of the defender.

Example 3 (Functional dependency and frequencies for packing problem). Given
the functional dependency A → B, consider the three fragmentation instances
(f iA, f

i
B) over the same fragmentation schema 〈FA({A}, FB({B}〉 shown in Fig-

ure 3. Basically, (f1A, f
1
B) is an abstract version of Example 2: since “packet”

a1 can only be allocated to “container” b1, the value combination (a1, b1) must
occur twice in the original hidden relation instance underlying this fragmenta-
tion; nothing more definite can be inferred about the combinations of a2 and
a3 with b2 and b3, respectively. For (f2A, f

2
B), “packet” a1 can be allocated to

either “container” b1 or “container” b2, and then “packets” a2 and a3 both must
be allocated to the container not selected for “packet” a1. Thus, no (definite) in-
ferences are possible at all. For (f3A, f

3
B), Lemma 1 already asserts that the value

combination (a1, b1) is matching-inferrable and hence occurs at least once in the
hidden instance underlying this fragmentation, since ca1 + cb1 = 5 + 5 > 9; un-
der the presence of the functional dependency, now Proposition 1 implies more,
namely that there must be exactly 5 occurrences. In turn, the latter fact to-
gether with the observable frequencies imply that (a2, b2) occurs 3 times in the
hidden instance, and (a3, b2) once. Hence, in this case, the duplicate-preserving
{A,B}-part of the hidden instance can be completely reconstructed from the
observable fragmentation instances.

Though even more complex, we can extend our considerations to numerical
dependencies of the form Y →min

max Z, where Y and Z are sets of attributes
and 1 ≤ min ≤ max are integers. Such a numerical dependency requires that
each subtuple µ over the attributes of Y occurs combined with at least min
and at most max different subtuples ν over the attributes of Z. A functional
dependency Y → Z can be seen as a numerical dependency Y →1

1 Z.
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Fig. 4. A relation instance of a schema with numerical dependency A→2
2 B and (un-

scrambled) derived fragmentation instances that uniquely determine the set of tuples
occurring in the relation instance

Example 4 (Numerical dependency and frequencies). Figure 4 illustrates a spe-
cial case of an inference for a numerical dependency A→min

max B with k := min =
max and a relation instance with l · k tuple occurrences for some number l, hav-
ing l many different values under attribute A and k many different values under
attribute B. By the dependency, each of the l values under A must occur in
the hidden relation instance combined with each value under B, and thus the
relation instance must be the Cartesian product of the value sets involved.

Proposition 2 (Inferences by equations on frequencies). For A,B ∈ X,
let (R(X), {A→min

max B}) be a relational schema with the numerical dependency
A→min

max B as a single semantic constraint and r a relation instance containing n
tuples. For each value a occurring in r under attribute A, let ca be its frequency,
i.e., the number of its occurrences under A, and da := ||πB(σA=a(R)) || its
diversity, i.e., the number of different values under attribute B occurring together
with a, and then for each b ∈ πB(σA=a(R)), cba the frequency of (a, b), i.e., the
number of its occurrences in r. Moreover, for each value b occurring in r under
attribute B let cb be the number of its occurrences under B.

Then, for all values a occurring in r under attribute A and for all values b
occurring in r under attribute B the following equations holds:

cb =
∑

a∈πA(σB=b(R))

cba , (2)

ca =
∑

b∈πB(σA=a(R))

cba , (3)

min ≤ da ≤ max . (4)

Proof. Equation (2) can similarly be justified as equation (1). Equations (3)
and (4) are immediate consequences of the definitions of the items involved. ut

Remark 5. Similarly as discussed for functional dependencies, the attacker’s task
can be considered as solving the set of equations derived from instantiating the

11



equations (2), (3) and (4) – with the relation symbol R and the values da and cba
derived from R treated as the unknown items. Again, in general the equations
will not have a unique solution and, thus, regarding a syntactically protected
association C, conceptually only the intersection of the projections on C will
deliver a certain inference. Surely, the data owner is interested in blocking such
an inference, i.e., in ensuring that the intersection in empty. Evidently, the latter
task is computationally highly complex, and so far neither a practical procedure
to solve the equations involved nor an efficient and effective method to block
their solvability is known to us. Presumably, the best we can hope to achieve
is an approximative blocking method, favoring efficiency at the costs of loss of
availability or violation of strict confidentiality.

5 Inferences with Tuple-Generating Dependencies

We are now addressing the impact of another well-known class of data dependen-
cies, namely tuple-generating dependencies which, basically, require that when-
ever one or more tuples each of a specific form occur together in a relation
instance, possibly related by identical components, another tuple partially con-
structed from selected components of those tuples and some constant symbols
has to be present as well. Schema design theory has identified such dependencies
as a possible source of redundancy in relation instances and, thus, of options to
infer nontrivial information already from parts of an instance. Furthermore, each
functional dependency entails a corresponding tuple-generating dependency, and
thus studying the latter kind another aspect of the former one will be treated, to-
gether with the consequences of extensional background knowledge as expressed
by means of constant symbols.

Definition 4 (Tuple-generating dependencies). For a relational schema
(R(X),SC) with attribute set X = {A1, . . . , An} and data dependencies SC,
an element of SC is called a tuple-generating dependency if it has a represen-
tation as an (untyped) sentence (without free variables) of first-order logic (with
constant symbols) of the syntactic (implicational) form

(∀x)(∃y)[ [
∧

j=1,...,p

αj ] =⇒ β ] such that

1. for j = 1, . . . , p, the premises αj are relational atoms of the form
R(tj,1, . . . , tj,n) where each term tj,i is either a universally quantified variable
contained in x or a constant symbol;

2. the conclusion β is a relational atom of the form R(tp+1,1, . . . , tp+1,n) where
each term tp+1,i is either a universally quantified variable contained in at
least one premise (and thus also in x) or an existentially quantified variable
contained in y or a constant symbol;

3. the prefix (∀x)(∃y) comprises exactly the variables occurring in some
premise or in the conclusion.
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We start our investigations about the impact of a single tuple-generating
dependency by considering two examples.

Example 5 (Tuple-generating dependency without frequencies). Consider the
fragmentation schema with attribute sets X1 = {A1, A3} and X2 = {A2, A4}
to split the syntactically protected association C = {A3, A4} for the relational
schema with the attributes A1, A2, A3 and A4 and the dependency Φ defined by

(∀x1, x2, x3, x4, x̄1, x̄2, x̄3, x̄4)

[ [R(x1, x̄2, x3, x̄4) ∧ R(x̄1, x2, x̄3, x4)] =⇒ (∃y1, y2)R(y1, y2, x3, x4)] .

Having the fragmentation schema in mind, this dependency can be given the
following intuitive interpretation: if simultaneously a value combination (x1, x3)
is visible in the fragment for X1 and a value combination (x2, x4) is visible in the
fragment for X2, then the value combination (x3, x4) occurs in the split associa-
tion C, the intended protection of which would thus be violated. In contrast, lack-
ing the background knowledge that the original relation satisfies Φ, in general an
observer could not distinguish whether the value x3 seen in one fragment and the
value x4 seen in the other fragment actually occur together in a single tuple under
the attributes in C or not. In fact, the relation {(a1, ā2, a3, ā4), (ā1, a2, ā3, a4)}
would generate the fragments {(a1, a3, ), (ā1, ā3)} and {(ā2, ā4), (a2, a4)}, leav-
ing open which of the two possible matchings is the original one, in particular
whether the value combinations (a3, a4) and (ā3, ā4) or the value combinations
(a3, ā4) and (ā3, a4) actually occur under the attributes in C.
We also note that the inspected tuple-generating dependency Φ can actually
be considered as an embedded multivalued dependency for the projection on the
attribute set {A3, A4}, shortly denoted by ∅ � A3|A4, requiring that this pro-
jection is the Cartesian product of the projection on {A3} with the projection
on {A4}, and obviously violated by the relation defined above.

Proposition 3 below will treat the kind of situation described in Example 5
more generally. The proposition will present three syntactic conditions regarding
the occurrences of terms in a tuple-generating dependency to perform successful
inferences about a split association C solely on observing data in the fragments.
These conditions are outlined as follows. On the one hand and straightforwardly,
(a) each non-constant term in the C-part of the conclusion has to be determined
in at least one premise. On the other hand and somehow more sophistically, the
constraints on relevant terms as expressed in the premises have to be restricted
(b) regarding occurrences of one or more terms within a single premise and (c)
regarding the occurrences of one term across two or more premises.

In terms of first-order logic, the latter two conditions would allow us to
rewrite the tuple-generating dependency using a slightly more general syntactic
form where each original premise has been transformed into a derived formula
that gets a prefix of existentially quantified variables. Such a purely existential
prefix then serves to express an effect that is equivalent to consider only the
projection on the attributes of only one of the fragments. For the dependency Φ
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considered above, the following rewriting would be suitable:

(∀x1, x2, x3, x4)

[ [(∃x̄2, x̄4)R(x1, x̄2, x3, x̄4) ∧ (∃x̄1, x̄3)R(x̄1, x2, x̄3, x4)]

=⇒ (∃y1, y2)R(y1, y2, x3, x4)] .

To formally express and verify the intuition just outlined, we first need to pre-
cisely define the notions of an attribute being either essential or isolated.

Definition 5. Let αj be a premise of a tuple-generating dependency Φ over the
attribute set X = {A1, . . . , An}. Then the set Ej of essential attributes (for αj)
is defined as the smallest subset of X with the following properties:

1. If tj,i is a constant symbol in αj, then Ai ∈ Ej.
2. If tj,i1 is a universally quantified variable multiply occurring in αj such that

tj,i1 = tj,i2 with i1 6= i2, then both Ai1 ∈ Ej and Ai2 ∈ Ej.
3. If tj,i is a universally quantified variable in αj that also occurs in the C-part

of the conclusion β of Φ, then Ai ∈ Ej.

All remaining attributes are called isolated in αj, i.e., we define Ij = X \ Ej.

For the simple dependency Φ considered in Example 5 above, only the third
rule applies and thus we get E1 = {A3} and E2 = {A4}.

Proposition 3 (Inferences by a single tuple-generating dependency
only). Let F = 〈F1(X1), . . . , Fm(Xm)〉 be the fragmentation schema derived
from a relational schema (R(X),SC) with attribute set X = {A1, . . . , An} and
a sequence X of attribute sets partitioning X such that SC = {Φ} contains the
tuple-generating dependency Φ = (∀x)(∃y)[ [

∧
j=1,...,p αj ] =⇒ β ] as a single

semantic constraint. Furthermore, let attribute set C be an association syntac-
tically protected by F , and consider the following assertions:

1. (a) In the conclusion β = R(tp+1,1, . . . , tp+1,n), for each attribute Ai ∈ C
the term tp+1,i is a constant symbol or a universally quantified variable.

(b) For each premise αj the set Ej of its essential attributes is fully contained
in exactly one attribute set Xe(j) of the partition X .

(c) If a universally quantified variable x occurs in two or more premises
αj1 , αj2 , . . . , then all occurrences are within the pertinent sets of essential
attributes Ej1 , Ej2 , . . . .

2. For all relation instances r of (R(X),SC) satisfying the premises
σ[α1], . . . , σ[αp] of Φ for some substitution σ of the variables in x the gen-
erated fragmentation instance f is not inference-proof regarding C, i.e.,
F -1,C

SC (f) 6= ∅.

Then assertion 1 implies assertion 2.
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Proof. Assuming assertion 1, suppose the relation instance r satisfies both the
sentence Φ, which has only universally quantified variables in the premises, and
the substituted premises σ[α1], . . . , σ[αp] of Φ for a suitable substitution σ of the
variables in x. Then there exists a substitution τ of the variables in y such that
r also satisfies the substituted conclusion τ [σ[β]] = τ [σ[R(tp+1,1, . . . , tp+1,n)] ].
Thus the subtuple µ over C formed from this conclusion occurs in r. According
to the assumed assertion 1.(a), the substitution τ for the existentially quantified
variables is not relevant for µ and thus we actually have µ = (σ[tp+1,i])Ai∈C . In
the remainder of the proof we will verify that for the fragmentation F(r) = f =

〈f1, . . . , fm〉 we have µ ∈ F -1,C
SC (f) and thus F -1,C

SC (f) 6= ∅.
Let r̃ be any relation instance of the relational schema (R(X), {Φ}) generating

the same fragmentation, i.e., F(r̃) = f .
For j = 1, . . . , p define µj to be the Xe(j)-part of σ[αj ], where e(j) is de-

termined by assumption 1.(b) assuring that µj assigns values to all essential
attributes of the premise αj . In particular, we have µj ∈ fe(j).

Furthermore, for any isolated attribute Ai of αj consider the term tj,i. Ac-
cording to property 1 of Definition 5, tj,i is not a constant symbol and, thus,
it is a universally quantified variable. Moreover, this variable has no further
occurrences within that premise or any other premise or the C-part of the con-
clusion, according to property 2 of Definition 5, the assumed assertion 1.(c) and
property 3 of Definition 5, respectively.

Let xiso comprise all those universally quantified variables under isolated
attributes, and xess the remaining ones occurring in the essential parts of the
premises. Denoting the restriction of the substitution σ to xess by σess and ob-
serving that µj ∈ fe(j) = π̄?

Xe(j)
(r̃) (here π̄? signifies a projection in the sense of

Definition 1), we conclude that there exists a substitution σiso of the variables
xiso such that σiso[σess[αj ] ] ∈ r̃. By the construction, these tuples comply with
the premises of the dependency Φ. Applying Φ then implies that for some sub-
stitution τ of the existentially quantified variables in y also τ [σiso[σess[β] ] ] ∈ r̃.
By property 3 of Definition 5 and assumed assertion 1.(a) the C-part of the tuple
τ [σiso[σess[β] ] ] only depends on σess and thus equals µ. Hence µ ∈ πC(r̃). ut

Proposition 3 describes situations that enable an attacking observer to vio-
late inference-proofness just be logical entailment without additionally exploiting
frequencies. The next example tells us that even in situations not captured by
Proposition 3 the observation of frequencies might turn out to be harmful.

Example 6 (Tuple-generating dependency and frequencies). We reconsider Ex-
ample 5 above but now assume a more frequently encountered kind of a tuple-
generating dependency, namely the multivalued dependency shortly denoted by
A1, A2 � A3|A4, having the following formalization in first-order logic:

(∀x1, x2, x3, x4, x̄3, x̄4)

[ [R(x1, x2, x3, x4) ∧ R(x1, x2, x̄3, x̄4)] =⇒ R(x1, x2, x3, x̄4)] .

Intuitively, this dependency requires that whenever the value combination
(x1, x2) under the attributes A1 and A2 occurs both with the value combina-
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R A1 A2 A3 A4

a1 a2 a3 a4

ā1 ā2 ā3 ā4

ā1 ā2 ā3 ȧ4

ā1 ā2 ȧ3 ā4

ā1 ā2 ȧ3 ȧ4

FA1,A3 A1 A3

a1 a3

ā1 ā3

ā1 ā3

ā1 ȧ3

ā1 ȧ3

FA2,A4 A2 A4

a2 a4

ā2 ā4

ā2 ȧ4

ā2 ā4

ā2 ȧ4

Fig. 5. A relation instance of a schema with multivalued dependency A1, A2 � A3|A4

and derived fragmentation instances for attribute sets X1 = {A1, A3} and X2 =
{A2, A4} that uniquely determine the set of tuples occurring in the relation instance

tions (x3, x4) and (x̄3, x̄4) under the attributes A3 and A4, then the former value
combination also occurs together with (x3, x̄4). More generally, this requirement
then implies that (x1, x2) even occurs together with each element in the Carte-
sian product of the jointly occurring values under A3 and the jointly occurring
values under A4. Consequently, for each value combination (x1, x2) the number
of jointly occurring value combinations (x3, x4) is the cardinality of a Cartesian
product. More precisely, this number is the arithmetic product of the cardinal-
ity of the jointly occurring x3-values and the cardinality of the jointly occurring
x4-values. This consequence might enable combinatorial reasoning under the ad-
ditional provision that the effect of duplicates is appropriately considered, i.e.,
that in general an observer can directly determine frequencies rather than only
cardinalities.
Most notably, such a reasoning might be successful (from the point of view of an
attacker) even for the present situation where both the attribute set {A1, A2}
of the dependency’s left-hand side and the attribute set {A3, A4} of the depen-
dency’s right hand side – which is the syntactically protected association C –
are split by the fragmentation schema.
In fact, Figure 5 shows such a success as follows. The single occurrence of (a1, a3)
has to match the single occurrence of (a2, a4), since otherwise, to complete the
matching, for each fragment there would be only three candidates left to come
up with a result of the form (ā1, ā2, . , . ) but the multivalued dependency would
require that there are four, a contradiction. Furthermore, each matching of the
remaining subtuple instances in the two fragments produces the same four tu-
ples. Thus the original relation instance can be fully reconstructed based on the
fragment instances.

6 Related Work and Conclusions

Inference analysis and control for information published about database rela-
tions have been an important topic in research on confidentiality enforcement
since quite a long time, presumably starting with seminal work on informa-
tion leakage via statistical databases, as, e.g., summarized by D.Denning [17] as
early as 1982, and later continued under a much broader perspective, as more
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recently surveyed by, e.g., B. Fung et al [18]. The particular proposal of frag-
menting relational data for ensuring confidentiality has arisen in different forms
with the trend of outsourcing data for cloud computing since around ten years.
First proposals by V.Ciriani et al [12,13] only used fragmentation, but subse-
quent work of G.Aggarwal et al [2], V.Ciriani et al [14], V.Ganapathy et al [19]
and X.Xu et al [28] additionally employed encryption.

Initial deeper analysis by J. Biskup et al [11,10] of the actual achievements of
fragmentation in the presence of data dependencies – as usually employed for
relational databases in practice – pointed to the weakness of the simple syntactic
splitting approach. This analysis also led to more semantically oriented refine-
ments, guaranteeing inference-proofness in a strong sense for special classes of
data dependencies, but unfortunately in general also increasing the computa-
tional complexity of finding appropriate fragmentation schemas. For the specific
setting of [14] also underlying our contribution, V.Ciriani et al [15] later also pro-
vided a refinement and its analysis, considering a non-standard and still weak
syntactic notion of functional dependence as an attacking receiver’s background
knowledge. Their refinement exemplifies a compromise between the conflicting
goals involved, effective preservation of confidentiality on the one hand and effi-
cient computation of fragmentations on the other hand.

Our contribution presents an exploratory study regarding the former goal
when using the setting of [14]. While the authors of [15] only deal with a weak
notion of functional dependence between attributes on the schema level, we study
the impact of classical, more expressive functional dependencies on the instance
level, and we extend these investigations to further important classes of data
dependencies. Moreover, considering the instance level, we identify the crucial
role of preserving duplicates when fragmenting a relation instance: this feature
opens the way for combinatorial reasoning to infer hidden information, as far as
we are aware for this context neglected in previous work. Once opened, for the
first time this way enables us to investigate possible interferences of combina-
torial reasoning about observable frequencies on the one hand and entailment
reasoning about data dependencies known from the database schema and actual
data values observed in the fragments on the other hand.

Briefly summarized, these investigations provide initial, hopefully representa-
tive insight into conditions that enable or block inferences of information that is
intended to be hidden by completely splitting the underlying data, respectively.
Though already aiming at covering most of the relevant cases, future work still
has to complement the overall picture, ideally in order to come up with a com-
plete characterization of inference options in terms of a condition that is both
necessary and sufficient. Based on such a characterization, we could then design
a refined fragmentation approach that guarantees inference-proofness just by en-
suring that the result does not satisfy that condition. This long-term research
project could be elaborated both for single relation instances and, even more
ambitiously, for database schemas dealing with all their respective relation in-
stances. We have already explored a first step in such a direction in our study [10],
which however deals with a kind of fragmentation that let each observer only see
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one fragment. In contrast, one peculiarity of our setting as adopted from [14] is
that one observer sees all fragments and, thus, might exploit multiple views on
the same underlying original data. This situation is well-known to often consti-
tute a threat to confidentiality, as, e.g., treated in [18] for different settings.

From the point of view of database theory, our contribution deals with a
specific case of the much more general problem of computing the inversion of
database queries or, equivalently, solving equations in the relational algebra, as
studied in [9]. However, we are now deviating from the pure relational model,
which treats relations as pure sets allowing no duplicates and incorporating
no sequence of their members. Though we assume that the original relation is
duplicate-free, we explicitly study the impact of maintaining duplicates in the
fragments. Moreover, the inversion of a fragmentation by means of exploring
matchings in our sense aims at undoing the deliberate scrambling of data repre-
sentations. These features also make our settings slightly different from those for
the classical studies of lossless joins, see, e.g., [1]. While joins more generally deal
with overlapping projections, we require attribute-disjointness of the fragments
which reduces the join to the Cartesian product and in most practical cases vi-
olates losslessness. Nevertheless, for this special case our results provide insight
about the detailed information content of a lossy operation, see. e.g., [23].

Furthermore, in general inversion generates uncertainty about which element
of the pre-image has been the actual one and, thus, the challenge arise how to
determine the certain part of the pre-image contained in all its elements, also
known as skeptical reasoning, see, e.g., [24]. It would be worthwhile to explore
how the rich insight already gathered for this field could be adapted to our
problem, which exhibits the following similarities and particularities. First, the
space of possibilities is defined by two arguments: in both cases by a set of
explicitly expressed data dependencies – and their closure under entailment of
course – on the one hand and by visible data either original but incomplete one
or by fragmentation derived one, respectively, on the other hand. Second, the
aim is either to exactly determine the certain part (which would be the interest
of an attacker) or to block all options to gain any certain information, which is
the basic task of an owner’s protection mechanism.

Acknowledgment: We would like to thank Manh Linh Nguyen for stimulating
discussions while he has prepared his master thesis on a partial analysis of the
approach of fragmentation with encryption to protect privacy in data storage.
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