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Abstract. Publishing of data is usually only permitted when complying
with a confidentiality policy. To this end, this work proposes an approach
to weaken an original database instance: within a logic-oriented model-
ing definite knowledge is replaced by disjunctive knowledge to introduce
uncertainty about confidential information. This provably disables an
adversary to infer this confidential information, even if he employs his
a priori knowledge and his knowledge about the protection mechanism.
As evaluated based on a prototype implementation, this approach can
be made highly efficient. If a heuristic – resulting only in a slight loss of
availability – is employed, it can be even used in interactive scenarios.
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1 Introduction

Nowadays, data publishing is ubiquitous. Governments are often legally obliged
to provide data about matters of public concern, companies release project-
related data to partners and even in most peoples’ private lifes the sharing of data
plays a major role. But usually only certain portions of some data are appropriate
for being shared, as data often contains sensitive information. This applies in
particular to data containing personal information, as surveyed in [11,23].

In the area of relational databases the logic-oriented framework of Controlled
Interaction Execution (CIE) can assist a database owner in ensuring that each
of his interaction partners can only obtain a so-called “inference-proof view” on
the owner’s data [3]. An inference-proof view does not contain information to be
kept confidential from the respective partner, even if this partner is an adversary
trying to deduce confidential information by drawing inferences based on his a
priori knowledge and his general awareness of the protection mechanism.

An example of such a protection mechanism creating inference-proof materi-
alized views – which are suitable for data publishing – by modifying a minimum
number of truth-values of database tuples has been developed in [7]. This ap-
proach is rather versatile as it is based on an expressive fragment of first-order
? This work has been supported by the DFG under grant SFB 876/A5.
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logic, but also suffers from this expressiveness because of its high computational
complexity. Moreover, there might also be some ethical concerns as the modifi-
cation of truth-values means that a user’s view on the database contains lies.

This work introduces a novel approach within the framework of CIE creat-
ing inference-proof materialized views suitable for data publishing and thereby
provably enforcing a confidentiality policy without modifying any truth-values:
instead, harmful database tuples are replaced by weaker knowledge in the form
of disjunctions formed by ground atoms stemming from the policy (each of which
logically represents a database tuple). These disjunctions contain only true in-
formation, but weaken an adversary’s possible gain in information such that the
adversary is provably not able to infer protected sensitive information.

This approach is first developed in a purely generic way in the sense that
non-trivial disjunctions of any length ≥ 2 might be employed. Then a possible
instantiation of this generic approach is presented, which aims at maximizing
availability in the sense that only disjunctions of length 2 are seen to be admis-
sible. For this instantiation an algorithmic treatment based on graph clustering
is given, which fully specifies the approach except for an admissibility criterion
expressing which subsets of potential secrets might possibly form a disjunction.
This criterion should be tailored to the needs of each specific application and
can be easily specified by employing query languages of relational databases.

To be able to fully implement the availability-maximizing flavor to experi-
mentally demonstrate its high efficiency – which can be even raised by employing
a heuristic resulting only in a slight loss of availability – an example for such
an admissibility criterion called interchangeability is provided and evaluated.
Interchangeability admits only disjunctions formed by ground atoms which all
pairwise differ in the same single position and do not differ in any other posi-
tion. This local restriction of distortion preserves definite information about all
but one position of each ground atom and generalizes each distorted value to a
wider set of possible values. Moreover, extensions of the generic approach dealing
with policies (and hence disjunctions) of existentially quantified atoms and also
coping with a basic kind of an adversary’s a priori knowledge are outlined.

As an adversary is aware of which values are weakened by simply consid-
ering the disjunctions, particular attention must be paid to eliminate so-called
meta-inferences (cf. [3,5]). A deduction of sensitive information is called a meta-
inference, if it is obtained by excluding all possible alternative settings, under
which this sensitive information is not valid, by simulating these alternative
settings as inputs for the algorithm generating the inference-proof views and
by being able to distinguish the outputs resulting from each alternative setting
from the published one. In this work meta-inferences are eliminated by imposing
a total order on the sentences of weakened instances.

The generalization of values to a wider set of possible values is similarly used
in the approaches of k-anonymization and `-diversification [10,16,21]. These ap-
proaches aim at preventing the re-identification of individuals based on so-called
quasi-identifiers, which describe some of the individuals’ properties, by generaliz-
ing these quasi-identifiers. We could model k-anonymization and `-diversification
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as a special case within an extensions of our work, which deals with confiden-
tiality policies containing disjunctions of existentially quantified atoms.

As the suppression of a value corresponds to its maximum generalization, this
work is also related to the approach developed in [2], which aims at achieving
confidentiality by replacing certain values of certain database tuples by null-
values. But – in contrast to our work – this approach relies on the assumption
that an adversary is not aware of which values are perturbed.

Moreover, there are other approaches clustering the vertices of a graph into
sets of vertices to be made indistinguishable to achieve privacy [9,12]. But these
approaches aim at preventing structural re-identification of the graph itself, while
the approach presented in our work aims at achieving indistinguishability based
on disjunctions induced from the clustering of the vertices of a graph.

In the remainder of this article, Sect. 2 provides the basic ideas of achiev-
ing inference-proofness by weakening a database instance. Sect. 3 then extends
these ideas to also work with confidentiality policies of an arbitrary number of
ground atoms, thereby balancing availability and confidentiality requirements.
Subsequently, an overall algorithm – which is formally proved to comply with a
declarative definition of inference-proofness – is presented in Sect. 4 and a proto-
type implementation of this algorithm is evaluated with respect to its efficiency
in Sect. 5. Before concluding this work with Sect. 7, the algorithm is again ex-
tended in Sect. 6 to also deal with confidentiality policies containing existentially
quantified atoms and to moreover consider an adversary’s a priori knowledge.

2 Basic Ideas: Inference-Proofness by Weakening

The approach developed in this work is located within the area of relational
databases. For simplicity, all data is supposed to be represented within a single
database instance r over a relational schema 〈R|AR|SCR〉 with relational symbol
R and the set AR = {A1, . . . , An} of attributes. Furthermore, all attributes are
assumed to have the same fixed but infinite domain Dom of constants (cf. [4,15])
and the set SCR contains some semantic (database) constraints (cf. [1]), which
must be satisfied by the relational instance r. For now, these semantic constraints
are neglected (i.e., SCR = ∅), but they will become of interest in Sect. 6.

Each considered (original) instance r is supposed to represent complete in-
formation. Thus, the instance contains only a finite set of valid tuples and each
constant combination c of the infinite set Domn with c /∈ r is assumed to be not
valid by Closed World Assumption (CWA). This is exemplified in Fig. 1(a).

In compliance with CIE (cf. [3,4,7,6,5]), a database instance is modeled logic-
orientedly. Therefore, a language L of first-order logic containing the predicate
symbol R of arity |AR| = n and the binary predicate symbol ≡ for expressing
equality is set up. The fixed but infinite domain Dom is taken as the set of
constant symbols of L and the variables of an infinite set Var can be used to
build sentences (i.e., closed formulas) in the natural fashion [15].

This syntactic specification is complemented with a semantics reflecting the
characteristics of databases by means of so-called DB-Interpretations [4,7,15]:

3



r + –
(a, b, c) (a, a, a)

(a, c, c) (a, a, b)

(b, a, c) (a, a, c)
...

(a) Complete instance r

R(a, b, c), R(a, c, c), R(b, a, c)

(∀X)(∀Y )(∀Z) [

(X ≡ a ∧ Y ≡ b ∧ Z ≡ c) ∨
(X ≡ a ∧ Y ≡ c ∧ Z ≡ c) ∨
(X ≡ b ∧ Y ≡ a ∧ Z ≡ c) ∨
¬R(X,Y, Z) ]

(b) Logic-oriented modeling of r

Fig. 1: Example of a logic-oriented modeling of a complete database instance

Definition 1 (DB-Interpretation). Given the language L with the set Dom
of constant symbols, an interpretation I is a DB-Interpretation for L iff

(i) Dom is the universe of I and I(v) = v holds for each v ∈ Dom,
(ii) predicate symbol R is interpreted by a finite relation I(R) ⊂ Domn,
(iii) predicate symbol ≡ is interpreted by I(≡) = {(v, v) | v ∈ Dom}.

A DB-Interpretation Ir is induced by a complete database instance r, if its
relation Ir(R) is instantiated by r, i.e., Ir(R) = {c ∈ Domn | c ∈ r}.

The notion of satisfaction/validity of formulas in L by a DB-Interpretation
is the same as in usual first-order logic. A set S ⊆ L of sentences implies/entails
a sentence Φ ∈ L (written as S |=DB Φ) iff each DB-Interpretation I satisfying
S (written as I |=M S) also satisfies Φ (written as I |=M Φ).

A logic-oriented modeling of the complete instance r of Fig. 1(a) is given in
Fig. 1(b). Each valid tuple c ∈ r is modeled as a ground atom R(c) of L and the
infinite set of invalid tuples – which is not explicitly enumerable – is expressed
implicitly by a so-called completeness sentence (cf. [4]) having a universally quan-
tified variable Xj for each attribute Aj ∈ AR. This completeness sentence ex-
presses that every constant combination (c1, . . . , cn) ∈ Domn (substituting the
universally quantified variables X1, . . . , Xn) is either explicitly excluded from
being invalid or satisfies the sentence ¬R(c1, . . . , cn). By construction, this com-
pleteness sentence is satisfied by the DB-Interpretation Ir induced by r.

To achieve confidentiality, a confidentiality policy containing so-called poten-
tial secrets [3] is set up. This policy is supposed to be known by an adversary
trying to recover an original instance r unknown to him based on his knowledge
about a weakened variant of r and his further (a priori) knowledge.

Definition 2 (Confidentiality Policy). A potential secret Ψ is a sentence of
L and a confidentiality policy psec is a finite set of potential secrets. A complete
database instance r obeys a potential secret Ψ ∈ psec, if Ir 6|=M Ψ . Moreover,
this instance r obeys the confidentiality policy psec, if r obeys each Ψ ∈ psec.

For now – until Sect. 6 – only potential secrets in the form of ground atoms
are considered. To enforce a given confidentiality policy psec, an incomplete
weakened variant weak (r, psec) of a complete original instance r over 〈R|AR| ∅ 〉
is constructed by a weakening algorithm such that
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R(b, a, c)

R(a, b, c) ∨R(a, c, c)

(∀X)(∀Y )(∀Z) [

(X ≡ a ∧ Y ≡ b ∧ Z ≡ c) ∨
(X ≡ a ∧ Y ≡ c ∧ Z ≡ c) ∨
(X ≡ b ∧ Y ≡ a ∧ Z ≡ c) ∨
¬R(X,Y, Z) ]

(a) Weakening weak (r, psec) obeying
the policy psec = {R(a, b, c), R(a, c, c)}

R(a, c, c), R(b, a, c)

R(a, b, c) ∨R(a, b, d)

(∀X)(∀Y )(∀Z) [

(X ≡ a ∧ Y ≡ b ∧ Z ≡ c) ∨
(X ≡ a ∧ Y ≡ b ∧ Z ≡ d) ∨
(X ≡ a ∧ Y ≡ c ∧ Z ≡ c) ∨
(X ≡ b ∧ Y ≡ a ∧ Z ≡ c) ∨
¬R(X,Y, Z) ]

(b) Weakening weak (r, psec′) obeying
the policy psec′ = {R(a, b, c), R(a, b, d)}

Fig. 2: Possible inference-proof weakenings of the example instance of Fig. 1

– weak (r, psec) contains only true information, i.e., Ir |=M weak (r, psec), and
– for each potential secret Ψ ∈ psec the existence of a complete alternative

instance rΨ over 〈R|AR| ∅ 〉 is guaranteed such that
– this instance rΨ obeys Ψ , i.e., IrΨ 6|=M Ψ , and the weakening of rΨ is indis-

tinguishable from the weakening of r, i.e., weak (rΨ , psec) = weak (r, psec).

Given an original instance r and a simple policy psec = {Ψ1, Ψ2}, such a
weakening weak (r, psec) can be easily computed: provided that Ψ1 is not obeyed
by r or (and, respectively) Ψ2 is not obeyed by r, each knowledge about the
constant combinations of Ψ1 and Ψ2 is removed from instance r and replaced by
the weaker disjunctive knowledge that Ψ1 or Ψ2 is valid.

In contrast to the original instance r, a total order is supposed to be defined
on the sentences that might occur in a weakened instance weak (r, psec) (cf. [4]).
This guarantees that an alternative instance rΨ with IrΨ |=M weak (r, psec) is
not distinguishable from r based on a different arrangement of the sentences of
its weakened instance weak (rΨ , psec) compared to weak (r, psec). Otherwise, an
adversary might be able to draw the meta-inference (cf. Sect. 1) that rΨ is not
the original instance of his interest because of weak (rΨ , psec) 6= weak (r, psec).

To exemplify the simple case, consider the potential secrets Ψ1 = R(a, b, c)
and Ψ2 = R(a, c, c) both not obeyed by instance r of Fig. 1. Both Ψ1 and Ψ2

can be protected by weakening r as depicted in Fig. 2(a). From an adversary’s
point of view both alternative instances r(1) = {(a, c, c), (b, a, c)} obeying Ψ1 and
r(2) = {(a, b, c), (b, a, c)} obeying Ψ2 are indistinguishable from the “real” original
instance because of weak (r, psec) = weak (r(1), psec) = weak (r(2), psec).

Similarly, the potential secrets Ψ ′1 = R(a, b, c) not obeyed by r and Ψ ′2 =
R(a, b, d) obeyed by r can be protected by weakening r as depicted in Fig. 2(b).
In this case the completeness sentence known from Fig. 1(b) is extended by the
disjunct (X ≡ a ∧ Y ≡ b ∧ Z ≡ d) to ensure Ir(1)′ |=M weak (r, psec′) for
the alternative instance r(1)′ = {(a, b, d), (b, a, c)} obeying Ψ ′1 as the constant
combination (a, b, d) is not excluded from being invalid in r. The alternative
instance obeying Ψ ′2 is simply r itself.
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As a last and easy case, consider a confidentiality policy psec′′ = {Ψ ′′1 , Ψ ′′2 }
obeyed by r. Here no weakening of r is required, i.e., weak (r, psec′′) = r.

3 Treating Non-Simple Sets of Potential Secrets

In Sect. 2 the basic ideas to create inference-proof weakenings protecting simple
confidentiality policies have been introduced. Now, these basic ideas are extended
to be able to deal with non-simple policies containing an arbitrary number of
ground atoms. So, given a non-simple policy psec, the challenge is to construct
a set of disjunctions consisting of potential secrets of psec such that availability
and confidentiality requirements are suitably balanced.

3.1 A First Generic Approach

A first generic approach is to partition the policy psec into disjoint subsets called
clusters. Then, for each cluster C a disjunction

∨
Ψ∈C Ψ is constructed, provided

that at least one potential secret of C is not obeyed by the original instance.
Note that a disjunction of length k is satisfied by 2k − 1 DB-Interpretations.

Consequently, if C is the set of clusters, there are up to
∏
C∈C (2|C| − 1) different

(alternative) database instances, whose induced DB-Interpretations satisfy the
weakened instance. From the point of view of an adversary only knowing the
weakened instance, each of these instances is indistinguishable from the original
one. Therefore, in terms of confidentiality it is desirable to construct large clus-
ters to maximize the number of these instances, while in terms of availability
small clusters are favored to minimize the number of these instances.

To also achieve a meaningful clustering of a policy psec regarding a specific
application, an additional notion of admissible indistinguishabilities specifying all
admissible clusters – i.e., all acceptable possibilities of making potential secrets
of psec indistinguishable by disjunctions – should be provided. These admissible
clusters need not be pairwise disjoint: the construction of a disjoint clustering
C, each of whose clusters is admissible, is the task of a clustering algorithm.

In some cases it might not be possible to construct such a clustering C and to
moreover guarantee that each of its clusters has a certain minimum size k∗. As
clusters of a suitable minimum size are inevitable to guarantee a wanted degree
of confidentiality, one obvious approach is to extend each too small cluster C ∈ C
of size |C| < k∗ by k∗ − |C| additional (i.e., artificial) potential secrets, thereby
constructing an extended clustering C∗ based on C. But as each additional po-
tential secret ΨA reduces availability, the goal is to find a clustering C for whose
extension only a minimum number of additional potential secrets is needed.

For the quality of a weakening it is of crucial importance that the employed
notion of admissible indistinguishabilities fits to the specific application consid-
ered: in terms of confidentiality all alternatives provided by a disjunction should
be equally probable from an adversary’s point of view and in terms of availability
each disjunction should still provide as much useful information as possible.
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Obviously, no generally valid approach to find such a notion for each possi-
ble specific application can be given. But as it is not desirable – and for policies
of realistic size usually even impossible – to let a security officer manually de-
sign sets of admissible disjunctions, a generic method to construct admissible
disjunctions based on a high level specification language is needed.

As a confidentiality policy should be usually managed by a database system,
one possible approach to construct admissible clusters of size k (with k ≥ k∗) is to
compute a series of k−1 self-joins on the policy table – resulting in combinations
each of which contains k pairwise different potential secrets. In this case well-
known query languages such as SQL or relational algebra [19] let a security officer
implement his concrete notion of admissible indistinguishabilities with the help
of a corresponding join condition.

To allow the extension of too small clusters of size k < k∗, a notion of ad-
missible indistinguishabilities might require that for some potential secrets of a
confidentiality policy up to k∗−1 additional potential secrets can be constructed
with a deterministic (and preferably efficient) algorithm. Such a construction
only uses a finite subset of the domain Dom of constant symbols. So although
favoring an infinite domain in theory (cf. Sect. 2) to avoid combinatorial effects
possibly leading to harmful inferences, a “sufficiently large” finite domain is ad-
equate in practice.

Definition 3 (Well-Defined Indistinguishability). Given a confidentiality
policy psec, the domain Dom of L and a minimum size k∗ of clusters, a notion
of admissible indistinguishabilities is well-defined, if there is a set C∗ such that

(i) for each Ψ ∈ psec the set C∗ contains a cluster CΨ = {Ψ, ΨI1 , . . . , ΨIk∗−1
}

(possibly extended) such that Ψ 6= ΨIi for 1 ≤ i ≤ k∗ − 1 and ΨIi 6= ΨIj for
1 ≤ i < j ≤ k∗ − 1 and

∨
Ψ̄∈CΨ Ψ̄ is an admissible indistinguishability,

(ii) CΨ ∩ CΨ ′ = ∅ holds for all clusters CΨ , CΨ ′ ∈ C∗ with CΨ 6= CΨ ′ ,
(iii) there is a deterministic algorithm creating each (additional) ΨA of C∗ with

ΨA /∈ psec, thereby (finitely) augmenting the active domain of psec and
(iv) the active domain of C∗ is contained in Dom.

Note that an extension of clusters is generated independently of any database
instance. As an adversary is moreover supposed to know the confidentiality policy
as well as the deterministic algorithms employed, he is able to determine all
additional potential secrets himself by simulating the corresponding algorithms.

3.2 Algorithmic Treatment of an Availability-Maximizing Flavor

In this subsection a possible instantiation of the generic approach aiming at
maximizing availability – and hence keeping the size of clusters as small as
possible – is developed. To be able to enforce confidentiality, for each potential
secret Ψ the existence of at least one alternative instance obeying Ψ must be
ensured (cf. Sect. 2 and Theorem 1 below). As clusters of size 2 – which are
the smallest clusters complying with this requirement – correspond to binary
relations, all admissible indistinguishabilities can be represented by a so-called
indistinguishability-graph, whose edges represent all admissible clusters.
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R(a, b, c)

R(a, b, b)

R(a, b, d)

R(b, b, b)

R(b, b, f)

R(b, b, e)

R(b, b, d)

R(a, c, b) R(c, a, a)

3

3

3 3

3

3 3

3

3

12

1

(a) Indistinguishability-graph with (bold) matching edges

R(c, a, a)

R(c, a, b)A

3

(b) Matching extension

Fig. 3: Graph with a clustering of potential secrets and a matching extension

Definition 4 (Indistinguishability-Graph). Given a confidentiality policy
psec and a well-defined notion of admissible indistinguishabilities, an indistin-
guishability-graph is an undirected graph G = (V,E) such that

(i) V := psec is the set of vertices of G, and the set of edges of G is
(ii) E := { {Ψ1, Ψ2} ∈ V × V | Ψ1 ∨ Ψ2 is an admissible indistinguishability }.

An example of an indistinguishability-graph for a non-simple policy is given
in Fig. 3(a). Note that for now the edge labelings are not of importance. On
such a graph a maximum set of pairwise (vertex-)disjoint clusters of size 2 (i.e.,
edges) can then be computed efficiently with well-known maximum matching
algorithms for general (i.e., not necessarily bipartite) graphs [14,17].

Definition 5 (Maximum Matching). Let G = (V,E) be an undirected graph
(without loops). A subset M ⊆ E is a matching on G, if {Ψ1, Ψ2}∩{Ψ̄1, Ψ̄2} = ∅
for each pair of different matching edges {Ψ1, Ψ2}, {Ψ̄1, Ψ̄2} ∈ M . A matching
M on G is a maximum matching, if |M ′| ≤ |M | for each matching M ′ ⊆ E on
G. A maximum matching M on G is a perfect matching, if each vertex Ψ ∈ V
is covered by M , i.e., there is exactly one {Ψ1, Ψ2} ∈M with Ψ ∈ {Ψ1, Ψ2}.

In Fig. 3(a) the subset of bold edges constitutes a maximum matching. As
demonstrated, a maximum matching is not necessarily a perfect matching. Even
given a connected graph with an even number of vertices, several vertices might
remain uncovered by a maximum matching. To ensure that each potential secret
is assigned to a cluster of size 2, additional potential secrets are created.

Definition 6 (Matching Extension). Let psec be a confidentiality policy and
let M be a maximum matching on the indistinguishability-graph of psec. A
matching extension M∗ of M and psec initially contains each matching edge
{Ψ1, Ψ2} ∈M and subsequently, one after another, for each Ψ ∈ psec uncovered
by M an edge {Ψ, ΨA} is added to M∗. Thereby ΨA is an additional potential
secret, i.e., a deterministically created sentence ΨA /∈ psec of L such that Ψ∨ΨA
is an admissible indistinguishability and ΨA /∈ {Ψ1, Ψ2} for each {Ψ1, Ψ2} ∈M∗.

In Fig. 3(b) such a matching extension in terms of the running example is
given. Note that a matching extension M∗ is always a valid matching: initially
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M∗ = M holds and then {Ψ, ΨA}∩{Ψ1, Ψ2} = ∅ is guaranteed in any subsequent
iteration for each {Ψ1, Ψ2} ∈M∗ before adding {Ψ, ΨA} to M∗.

As each matching extension M∗ is a perfect matching on the indistinguisha-
bility-graph for the set psec∗ of all potential secrets ofM∗, each potential secret is
in exactly one cluster of size 2. Moreover, in terms of availability, only a minimum
number of additional potential secrets are created as a maximum matching M
already covers as many potential secrets of the original policy psec as possible.

3.3 Admissible Indistinguishabilities Based on Local Distortion

Until now, the clustering of policy elements is based on a purely abstract no-
tion of admissible indistinguishabilities – which must be tailored to the needs of
each specific application as argued in Sect. 3.1. An example for an easy to im-
plement and moreover well-defined indistinguishability property, which locally
restricts distortion within a disjunction, is the so-called interchangeability, which
is applicable for each confidentiality policy consisting of ground atoms.

Definition 7 (Interchangeability). The ground atoms Ψ1 = R(c1, . . . , cn)
and Ψ2 = R(d1, . . . , dn) are interchangeable, if there is a single differing po-
sition m ∈ {1, . . . , n} with cm 6= dm and ci = di for each i ∈ {1, . . . , n} \ {m}. A
set C of ground atoms over R is interchangeable, if all Ψi, Ψj ∈ C with Ψi 6= Ψj
are pairwise interchangeable (and thus all differ at the same single position m).

The indistinguishability-graph given in Fig. 3(a) is constructed based on the
property of interchangeability and each of its edges is labeled with the single dif-
fering position of its incident potential secrets. Note that all indistinguishability-
graphs resulting from this property have the structure known from a graph in-
troduced by Knuth in [13] and further analyzed in [20], whose vertices are words
of fixed length, which are neighbored if they differ in exactly one position.

A disjunction
∨
i∈{1,...,k}R(c1, . . . , cm−1, c̃

(i)
m , cm+1, . . . , cn) only consisting of

pairwise interchangeable potential secrets has the advantage that the constant
combinations of each of its disjuncts all only differ at the same single position m.
Hence, it locally restricts distortion within this disjunction – and thus captures
another aspect of maximizing availability – by providing definite information
about all but the m-th columns in the sense that the original instance contains
at least one tuple of the form (c1, . . . , cm−1,�, cm+1, . . . , cn) and by only hiding
with which of the values c̃(1)

m , . . . , c̃
(k)
m this tuple is combined.

If a total order with a successor function succ( · ) is supposed to exist on
the set Dom of constant symbols, the creation of an additional potential secret
ΨA for an arbitrary potential secret R(c1, . . . , cn) is easy to define for the in-
terchangeability property. Choose a differing position m ∈ {1, . . . , n} arbitrarily
and initially set ΨA := R(c1, . . . , c̃m, . . . , cn) with c̃m := succ(cm). As long as ΨA
is in psec or ΨA is equal to an already constructed additional potential secret,
iteratively set c̃m := succ(c̃m). Note that – demanding clusters of a minimum
size of k∗ – in a worst case scenario at most (k∗− 1) · |psec| additional constants
are needed to create k∗ − 1 additional potential secrets for each of the |psec|
many policy elements. Hence, this indistinguishability property is well-defined.

9



A disadvantage of this kind of indistinguishability clearly is that it only pro-
vides a suitable number of possible disjunctions if the majority of policy elements
consist of constant combinations not differing much from each other. If this is
not the case, a large number of additional potential secrets is needed and hence
employing this kind of indistinguishability may result in a loss of availability.
This is exemplified in Sect. 5 and demonstrates that the task of suitably defining
admissible disjunctions crucially depends on the specific application considered.

4 Creation of Inference-Proof Weakenings

Before the overall algorithm creating an inference-proof weakening weak (r, psec)
of a complete database instance r and a confidentiality policy psec can be devel-
oped, the construction of such a weakened instance must be defined. As moti-
vated in Sect. 2, a weakened instance is a totally ordered sequence of sentences.

Definition 8 (Weakened Instance). Suppose that r is a complete database
instance over schema 〈R|AR| ∅ 〉 and C∗r is an (extended) clustering of a confi-
dentiality policy psec such that for each cluster C ∈ C∗r there is a potential secret
Ψ ∈ C with Ir |=M Ψ . Then the incomplete weakened instance weak (r, psec) is
constructed as the following three totally ordered sequences of sentences of L :

(i) Positive knowledge weak (r, psec)+: Each tuple c ∈ r with R(c) 6|=DB Ψ for
each Ψ ∈

⋃
C∈C∗r

C is modeled as a ground atom R(c). All of these ground
atoms are sorted lexicographically according to the order on Dom.

(ii) Disjunctive knowledge weak (r, psec)∨: For each cluster C ∈ C∗r the dis-
junction

∨
Ψ∈C Ψ is constructed. First, for each of these disjunctions its

disjuncts are sorted lexicographically according to the order on Dom and
then all of these disjunctions are sorted in the same way.

(iii) Negative knowledge weak (r, psec)−: A completeness sentence (cf. Sect. 2)
having a universally quantified variable Xj for each attribute Aj ∈ AR
is constructed. It has a disjunct (

∧
i∈{1,...,n} with ti∈Dom Xi ≡ ti ) for each

ground atom R(t1, . . . , tn) of weak (r, psec)+ and for each (existentially
quantified) atom1 (∃X)R(t1, . . . , tn) of a disjunction of weak (r, psec)∨.
The above mentioned disjuncts are sorted in the same way as the disjunc-
tions of weak (r, psec)∨. As a last disjunct ¬R(X1, . . . , Xn) is added.

An example of such a weakened instance is given in Fig. 4(c). Each weakened
instance weak (r, psec) contains only true information, i.e., Ir |=M weak (r, psec),
as for each ground atom R(c) of weak (r, psec)+ the tuple c is valid in r; each
disjunction of weak (r, psec)∨ contains a disjunct Ψi with Ir |=M Ψi by construc-
tion of C∗r ; and for each constant combination c ∈ Domn, for which ¬R(c) holds
by the completeness sentence of weak (r, psec)−, the tuple c is invalid in r.

Now that all basic operations are known, the overall algorithm generating an
inference-proof weakened instance is presented.
1 This definition is generalized to be compatible to Sect. 6. If a potential secret is a
ground atom, “(∃X)” is dropped and each ti is a constant symbol of Dom.
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r + –
(a, b, a) (a, a, a)

(a, b, b) (a, a, b)

(a, c, b)
...

(c, a, b)

(a) Original instance r

{R(a, b, b), R(a, c, b) },
{R(c, a, a), R(c, a, b)A}

(b) Clusters of a set C∗r with a
potential secret satisfied by Ir

R(a, b, a)

R(a, b, b) ∨R(a, c, b)

R(c, a, a) ∨R(c, a, b)

(∀X)(∀Y )(∀Z) [

(X ≡ a ∧ Y ≡ b ∧ Z ≡ a) ∨
(X ≡ a ∧ Y ≡ b ∧ Z ≡ b) ∨
(X ≡ a ∧ Y ≡ c ∧ Z ≡ b) ∨
(X ≡ c ∧ Y ≡ a ∧ Z ≡ a) ∨
(X ≡ c ∧ Y ≡ a ∧ Z ≡ b) ∨
¬R(X,Y, Z) ]

(c) Weakening weak (r, psec) based
on C∗r obeying the policy of Fig. 3(a)

Fig. 4: Example of an inference-proof weakening obeying the policy of Fig. 3

Algorithm 1 (Inference-Proof Weakening). Given a complete database in-
stance r over 〈R|AR| ∅ 〉, a confidentiality policy psec of ground atoms of L ,
a minimum size k∗ of clusters and a well-defined notion of admissible indistin-
guishabilities, a weakened instance weak (r, psec) is created as follows:

– Stage 1 (independent of r): Disjoint clustering of potential secrets
(i) Generate all admissible clusters with a minimum size of k∗

(e.g., an indistinguishability-graph G = (V,E) of psec (Def. 4))
(ii) Compute a disjoint clustering C based on the admissible clusters

(e.g., a maximum matching M ⊆ E on G (Def. 5))
(iii) Create C∗ from C by extending each too small cluster of C to size k∗

(e.g., by a matching extension M∗ of M and psec (Def. 6))
– Stage 2 (dependent on r): Creation of weakened instance

(iv) Create the subset C∗r := {C ∈ C∗ | Ir |=M
∨
Ψ∈C Ψ }

of (extended) clusters containing a potential secret not obeyed by Ir
(v) Create the weakened instance weak (r, psec) based on r and C∗r (Def. 8)

An example of a weakened instance created by the availability-maximizing
flavor of Algorithm 1 for the original instance of Fig. 4(a) is depicted in Fig. 4(c).
The confidentiality policy, the corresponding indistinguishability-graph – con-
structed based on the interchangeability property – and the extended matching
on which the set C∗r of clusters given in Fig. 4(b) is based on is known from Fig. 3.

To understand the importance of disjoint clusters, consider the instance r =
{c1} and the non-disjoint clusters C1 = {R(c1), R(c2)} and C2 = {R(c2), R(c3)}
with c1, c2, c3 ∈ Domn. Then, weak (r, psec) consists of weak (r, psec)+ = ∅
and weak (r, psec)∨ = {R(c1) ∨ R(c2)}. Moreover, because of R(c2) ∨ R(c3) /∈
weak (r, psec)∨ and by construction of the completeness sentence, an adversary
knows Ir 6|=M R(c2). Hence, he can infer that Ir |=M weak (r, psec)∨ can only
hold, if Ir |=M R(c1), thereby violating the potential secret R(c1) of C1.
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Theorem 1 (Inference-Proofness of Weakenings). Given the inputs of Al-
gorithm 1 (i.e., r over 〈R|AR| ∅ 〉, psec, k∗, and well defined indistinguishabili-
ties), this algorithm generates an inference-proof weakened instance weak (r, psec)
such that for each potential secret Ψ ∈ psec the existence of a complete alterna-
tive instance rΨ over 〈R|AR|∅〉 is guaranteed. This alternative instance rΨ obeys
Ψ , i.e., IrΨ 6|=M Ψ , and the weakening weak (rΨ , psec) generated by Algorithm 1
is indistinguishable from weak (r, psec), i.e., weak (rΨ , psec) = weak (r, psec).

Proof. Consider an arbitrary potential secret Ψ̃ ∈ psec and suppose that Stage 1
generated a (possibly extended) disjoint clustering C∗ with clusters of a minimum
size of k∗ ≥ 2. Assume that Ψ̃ is in the cluster C̃ = {Ψ̃ , Ψ̃I1 , . . . , Ψ̃Ik−1

} ∈ C∗.
If Ir 6|=M

∨
Ψ∈C̃ Ψ , the complete alternative instance rΨ̃ is r itself, i.e., rΨ̃ :=

r. This implies IrΨ̃ 6|=M
∨
Ψ∈C̃ Ψ and consequently rΨ̃ obeys Ψ̃ , i.e., IrΨ̃ 6|=M Ψ̃ ,

because of IrΨ̃ |=M ¬(
∨
Ψ∈C̃ Ψ) =

∧
Ψ∈C̃ (¬Ψ). As a direct consequence of rΨ̃ = r

the property of indistinguishability holds, i.e., weak (rΨ̃ , psec) = weak (r, psec).
If Ir |=M

∨
Ψ∈C̃ Ψ with Ψ̃ = R(cΨ̃ ) ∈ C̃ and a Ψ̃Im = R(cΨ̃Im

) ∈ C̃, the

complete alternative instance is rΨ̃ := (r \ {cΨ̃}) ∪ {cΨ̃Im}. Hence, r
Ψ̃ obeys Ψ̃ ,

i.e., IrΨ̃ 6|=M Ψ̃ , and IrΨ̃ |=M
∨
Ψ∈C̃ Ψ because of IrΨ̃ |=M Ψ̃Im . For each other

cluster C ∈M∗ with C 6= C̃ the corresponding disjunction
∨
Ψ∈C Ψ is satisfied by

IrΨ̃ if and only if it is satisfied by Ir because of rΨ̃ \ {cΨ̃ , cΨ̃Im } = r \ {cΨ̃ , cΨ̃Im }
and because of Ψ̃ 6∈ C and Ψ̃Im 6∈ C by the disjoint clustering.

This implies C∗
rΨ̃

= C∗r and hence also weak (rΨ̃ , psec)∨ = weak (r, psec)∨.

As rΨ̃ and r only differ in cΨ̃ and cΨ̃Im
and as C̃ with R(cΨ̃ ), R(cΨ̃Im

) ∈ C̃

is a cluster of both C∗
rΨ̃

and C∗r , also weak (rΨ̃ , psec)+ = weak (r, psec)+ holds.

By construction of the completeness sentence, weak (rΨ̃ , psec)− = weak (r, psec)−

directly follows and so the property of indistinguishability, i.e., weak (rΨ̃ , psec) =
weak (r, psec), holds, provided that the sentences of both of these sequences are
arranged in the same order. ut

5 Efficiency of the Approach

After developing Algorithm 1, a prototype implementation of the availability-
maximizing instantiation of this algorithm (cf. Sect. 3.2) is now sketched and
evaluated theoretically as well as experimentally. Thereby interchangeability (cf.
Def. 7) is employed as a well-defined indistinguishability property.

Within Stage 1 of Algorithm 1 the indistinguishability-graph is constructed
efficiently with a flavor of the merge-join algorithm (cf. Sect. 3.1), which is well-
known from relational databases [19]. In typical scenarios the runtime of this
algorithm is significantly better than its worst-case complexity O(|psec|2) [19].

To next compute a maximum matching (cf. [14,17]), the prototype benefits
from the “Boost”-library [8]. Although a maximum matching on a general graph
G = (V,E) can be computed in O(

√
|V |·|E|) (cf. [22]), common implementations
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as provided by “LEDA” [18] or “Boost” [8] prefer an algorithm performing in
O(|V | · |E| · α(|E|, |V |)) with α(|E|, |V |) ≤ 4 for any feasible input.

Stage 1 finally computes a matching extension M∗ and in a worst-case sce-
nario |psec| different additional potential secrets – whose creation in the case
of interchangeability is sketched in Sect. 3.3 – are needed. Provided that binary
search is employed to check collisions of tentatively constructed additional po-
tential secrets, M∗ is constructed in O(|psec|2 · log(|psec|)). But note that this
upper bound is purely theoretic and usually not even approached.

Stage 2 of Algorithm 1 first creates the subset C∗r of clusters based on M∗ in
O(|psec| · log(|r|)) by employing binary search to check which potential secrets
in the form of ground atoms are satisfied by the original instance. Finally, the
weakened instance is constructed. Again using binary search, weak (r, psec)+ is
constructed in O(|r| · log(|psec|)) and sorted in O(|r| · log(|r|)); weak (r, psec)∨ is
constructed in O(|psec|) and sorted in O(|psec| · log(|psec|)); and weak (r, psec)−

is constructed in O(|r|+ |psec|) and sorted in O((|r|+ |psec|) · log(|r|+ |psec|)).
The prototype is implemented in Java 7, except for the C++ implementa-

tion of the matching algorithm (see above). All experiments were run under
Ubuntu 14.04 on an “Intel Core i7-4770” machine with 32GB of main memory
and each published result is based on the average results of 100 experiments.

To generate the input data for a first test setup, for each experiment a partic-
ular finite set D ⊆ Dom of constant symbols is available for the construction of
the constant combinations of all database tuples and potential secrets, which are
all supposed to be of arity 4. As the cardinality of D varies over the experiments
from |D| = 10 to |D| = 20, the cardinality of the set constComb(D) := Dn of all
possible constant combinations varies from 104 = 10 000 to 204 = 160 000.

To evaluate Stage 1 of Algorithm 1, for each of the possible cardinalities of
D a randomly chosen subset of constComb(D) is selected to construct a random
confidentiality policy psec as input data for an experiment. Thereby, the fraction
of tuples of constComb(D) contained in the policy is stepwise increased from 10%
to 70% of all tuples of constComb(D). Hence, the average vertex degree of the
corresponding indistinguishability-graphs is also stepwise increased.

As depicted in Fig. 5(a), even for large policies Stage 1 of Algorithm 1 per-
forms very well in constructing clusterings of the policies. If an even faster com-
putation is needed, the matching heuristic presented in [17] – which performs in
time linear to the size of the graph – can be employed. As depicted in Fig. 5(b),
the usage of this heuristic significantly improves the runtime of Stage 1 and usu-
ally looses only a negligible fraction of matching edges in relation to a optimum
solution, as demonstrated in Fig. 5(c). Hence, using this heuristic results only in
a slight loss of availability, as an additional potential secret is needed for each
vertex uncovered by the matching.

To evaluate Stage 2 of Algorithm 1, for each of the possible cardinalities of
D two randomly chosen subsets of constComb(D) are selected to construct a
random database instance r as well as a random confidentiality policy psec. The
fraction of tuples of constComb(D) contained in r is stepwise increased from 10%
to 70% of all tuples of constComb(D) while the fraction of tuples contained in
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(d) Runtime of Stage 2 of Algorithm 1

Fig. 5: Experimental evaluation of Algorithm 1 for the first test setup

psec is fixed to 40%. According to Fig. 5(d), the runtime of Stage 2 needed to
construct a weakening based on a given clustering is negligible.

At first glance, input instances constructed based on 20 or even just 10 avail-
able constants might look like “toy examples”, but note that for a clustering of
fully random potential secrets based on the interchangeability property these
instances are the expensive inputs: the relatively small number of available con-
stants leads to constant combinations which are likely not to differ much from
each other and hence the corresponding indistinguishability-graphs have a large
number of edges making the computation of a maximum matching expensive.

This is demonstrated by experiments always constructing 100 000 fully ran-
dom tuples for a number of available constants varying from 20 to 80. As shown
in Fig. 6(a), increasing the number of available constants leads to a decreasing
of the average vertex degree of the indistinguishability-graphs. In the end the
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Fig. 6: Evaluation of the interchangeability property within the first test setup

graphs decompose into a large number of small connected components and as
hence the clustering becomes trivial the runtime of Stage 1 also declines. These
results are also verified by a second experiment fixing the number of constants
to 25 and linearly increasing the number of constructed potential secrets from
10 000 to 100 000. As shown in Fig. 6(b), this leads to an also linearly increasing
average vertex degree while the runtime of Stage 1 increases much stronger.

As very low average vertex degrees moreover lead to a large number of addi-
tional potential secrets (plotted in thousands in Fig. 6(a)), the interchangeability
property only provides suitably high availability, if the majority of policy ele-
ments consist of constant combinations not differing much from each other. This
demonstrates that the task of finding a suitable notion of admissible indistin-
guishabilities crucially depends on the specific application considered.

Next, a second test setup is initiated, which is supposed to be more practi-
cal than the fully random setup. This second setup – only considering Stage 1
as the runtime of Stage 2 is now known to be negligible – is based on a set
of objects, each of which has two attributes: the first attribute has a domain,
whose cardinality k is stepwise increased from 2 to 32, and the second attribute
has a domain of cardinality 100. Considering binary relations between some of
these objects, each constructible object is paired with 50 randomly chosen other
constructible objects – resulting in k ·100 ·50 tuples of arity 4, i.e., the number of
available constant combinations again varies from 10 000 (for k = 2) to 160 000
(for k = 32). Similarly to the first test setup, for each value of k the confiden-
tiality policy is created as a randomly chosen subset of all available constant
combinations, whose cardinality is stepwise increased from 10% to 70%.
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Fig. 7: Experimental evaluation of Algorithm 1 for the second test setup

For this second test setup the exact computation of Stage 1 performs better
than using the first test setup (cf. Fig. 7(a)) as the resulting graphs have a lower
but non-trivial average vertex degree. The runtime of the heuristic computation
is as good as known from the fully random setup, but the number of lost matching
edges is slightly higher compared to the first test setup (cf. Fig. 7(b)) as the
graphs resulting from the second test setup often have a lower but non-trivial
average vertex degree leading to slightly weaker but still very decent results.

6 Extending the Approach

So far, only potential secrets in the form of ground atoms have been considered.
To improve the expressiveness of confidentiality policies, potential secrets are
from now on so-called existentially quantified atoms known from [5]. Intuitively,
an existentially quantified potential secret Ψ = (∃Z)R(a, b, Z) states that an
adversary must not get to know that a tuple (a, b, c̃) with an arbitrary constant
symbol c̃ ∈ Dom is valid in the original instance r considered.

Definition 9 (Existentially Quantified Atom). A sentence of L is an ex-
istentially quantified atom if it is of the form (∃X)R(t1, . . . , tn) and

(i) each term ti is either a constant symbol of Dom or a variable of X,
(ii) the set X of existentially quantified variables is X = {t1, . . . , tn} \Dom,
(iii) each variable can only occur once, i.e., ti 6= tj for all ti, tj ∈X with i 6= j.

Though implication is generally hard (if not even impossible) to decide within
first-order logic [4], under DB-Semantics (cf. Def. 1) it is easy to decide for exis-
tentially quantified atoms [5]: (∃X)R(t1, . . . , tn) |=DB (∃Y )R(t̄1, . . . , t̄n) iff for
each term t̄i, which is a constant symbol of Dom, the term ti is also a constant
symbol of Dom such that ti = t̄i.
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Now, suppose that an instance r = {R(a, b, c)} and a confidentiality policy
psec = {(∃Z)R(a, b, Z), (∃Z)R(b, b, Z), R(a, b, c), R(a, b, d)} are inputs for a fla-
vor of Algorithm 1 creating the clusters C1 = {(∃Z)R(a, b, Z), (∃Z)R(b, b, Z)}
and C2 = {R(a, b, c), R(a, b, d)}. The weakened instance weak (r, psec) then con-
tains the disjunction R(a, b, c)∨R(a, b, d) and hence directly implies the knowl-
edge (∃Z)R(a, b, Z) which itself is protected by a potential secret of psec.

The preceding example indicates that this flavor of Algorithm 1 could create
a weakened instance which contains disjunctions implying knowledge protected
by potential secrets. So, this implied (and hence weaker) knowledge is still too
strong. To avoid the construction of too strong disjunctions, the algorithm must
clean the given confidentiality policy in a preprocessing step, i.e., the policy is
reduced to its weakest sentences. Moreover, adding the constructed additional
potential secrets to this set must not violate the properties of a cleaned set.

Definition 10 (Cleaned Set). Let S be a set of sentences of L . Its cleaned set
Ŝ is a maximum subset of weakest sentences of S such that no pair of different
sentences of Ŝ is semantically equivalent. Ψ ∈ S is a weakest sentence of S, if
for each sentence Ψ ′ ∈ S either Ψ ′ |=DB Ψ or both Ψ ′ 6|=DB Ψ and Ψ 6|=DB Ψ ′.

Reconsidering the example, p̂sec = {(∃Z)R(a, b, Z), (∃Z)R(b, b, Z)} is the
cleaned policy. Assuming that {p̂sec} is the created clustering, the weakening
weak (r, p̂sec) only contains the disjunction (∃Z)R(a, b, Z) ∨ (∃Z)R(b, b, Z) not
implying any (weaker) knowledge which itself is protected.

In particular, even the potential secrets R(a, b, c) and R(a, b, d) only con-
tained in the original policy psec are protected by weak (r, p̂sec): from an adver-
sary’s point of view an alternative instance r′ with Ir′ |=M weak (r, p̂sec) and
Ir′ 6|=M (∃Z)R(a, b, Z) is possible and for this instance also Ir′ 6|=M R(a, b, c) and
Ir′ 6|=M R(a, b, d) holds. This implicit protection of all removed policy elements
psec \ p̂sec by the cleaned policy p̂sec can be generalized as follows.

Lemma 1 (Implicit Protection). Let ΨS and ΨW be sentences of L such
that ΨW is weaker than ΨS, i.e., ΨS |=DB ΨW , and let Ir be a DB-Interpretation
with Ir 6|=M ΨW . Then ΨS is not satisfied by Ir either, i.e., Ir 6|=M ΨS.

In many real-world scenarios an adversary is supposed to also have some a
priori knowledge in addition to the knowledge provided by the database (cf. [3]).
A priori knowledge is then modeled as a finite set prior of sentences of L and
usually includes the set SCR of semantic constraints (cf. Sect. 2), i.e., SCR ⊆
prior . All sentences of prior are supposed to be satisfied by the original instance
r, i.e., Ir |=M prior , and furthermore do not directly compromise the confiden-
tiality policy psec, i.e., prior 6|=DB Ψ for each potential secret Ψ ∈ psec. To make
a first step towards the handling of a priori knowledge, an adversary is now
supposed to be also aware of such a set prior of ground atoms of L .

Similar to Def. 3, a notion of admissible indistinguishabilities might require
that for some potential secrets of the cleaned policy p̂sec up to k∗ − 1 addi-
tional potential secrets can be constructed. To moreover ensure that all non-
implications provided by cleaning the policy are not affected by combinatorial
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effects, the domain Dom must contain at least one “fresh” constant symbol not
occurring in a potential secret of psec or a constructed additional potential se-
cret. In terms of the credibility of these non-implications from an adversary’s
point of view, a much larger supply of these “fresh” constant symbols is of course
highly desirable.

Definition 11 (Well-Defined Indistinguishability Ext.). Given a cleaned
confidentiality policy p̂sec, an adversary’s a priori knowledge prior , the domain
Dom of L and a minimum size k∗ of clusters, a notion of admissible indistin-
guishabilities is well-defined, if there is a set C∗ such that

(i) for each Ψ ∈ p̂sec the set C∗ contains a cluster CΨ = {Ψ, ΨI1 , . . . , ΨIk∗−1
}

(possibly extended) such that Ψ 6= ΨIi for 1 ≤ i ≤ k∗ − 1 and ΨIi 6= ΨIj for
1 ≤ i < j ≤ k∗ − 1 and

∨
Ψ̄∈CΨ Ψ̄ is an admissible indistinguishability,

(ii) CΨ ∩ CΨ ′ = ∅ holds for all clusters CΨ , CΨ ′ ∈ C∗ with CΨ 6= CΨ ′ ,
(iii)

⋃
C∈C∗ C is a cleaned set,

(iv) prior 6|=DB ΨA for each (additional) ΨA of C∗ with ΨA /∈ p̂sec,
(v) there is a deterministic algorithm creating each (additional) ΨA of C∗ with

ΨA /∈ p̂sec, thereby (finitely) augmenting the active domain of psec,
(vi) the active domain of C∗ is contained in Dom and
(vii) Dom contains at least one constant not in the active domain of C∗.

As a direct consequence of this extension of Def. 3, no well-defined notion of
indistinguishability can be found, if the policy psec contains a potential secret
ΨW which is semantically equivalent to the weakest possible potential secret
(∃X)R(X) without any constant symbols. In this case the cleaned policy p̂sec
only contains ΨW and no additional potential secret ΨAW can be found for ΨW as
{ΨW , ΨAW } cannot be a cleaned set because of ΨAW |=DB ΨW .

Based on the thoughts presented so far, Algorithm 1 can be extended. Its
inference-proofness can be basically proved as known from Theorem 1, but each
“secure” alternative instance must furthermore satisfy an adversary’s a priori
knowledge to be credible from this adversary’s point of view [3].

Theorem 2 (Inference-Proofness of Weakenings). Let r be a complete in-
stance over 〈R|AR|SCR〉; psec be a policy of existentially quantified atoms; k∗ be
the minimum size of clusters; and assume that a well-defined notion of indistin-
guishabilities is given. Moreover, prior (with SCR ⊆ prior) is a priori knowledge
of ground atoms such that Ir |=M prior and prior 6|=DB Ψ for each Ψ ∈ psec.

The extended algorithm then creates an inference-proof weakened instance2
weak (r, psec) such that for each potential secret Ψ ∈ psec the existence of a com-
plete alternative instance rΨ over 〈R|AR|SCR〉 is guaranteed. This alternative
instance rΨ obeys Ψ , i.e., IrΨ 6|=M Ψ , satisfies the a priori knowledge prior ,
i.e., IrΨ |=M prior , and the weakening weak (rΨ , psec) is indistinguishable from
weak (r, psec), i.e., weak (rΨ , psec) = weak (r, psec).

The detailed proof of Theorem 2 is omitted for lack of space.
2 Though the weakening of an instance now also depends on prior , for convenience the
weakening-operator weak ( · , · ) is not extended to explicitly reflect this third input.
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7 Conclusion and Future Work

We developed a generic approach provably protecting sensitive information spec-
ified by a confidentiality policy consisting of ground atoms – even if an adversary
employs inferences. This is achieved by weakening a database instance by means
of disjunctions. Furthermore, an algorithm for an availability-maximizing flavor
of this approach has been proposed and an implementation of this algorithm
based on interchangeability has been shown to be highly efficient. Moreover, the
generic approach has also been extended to protect more expressive confiden-
tiality policies while also considering an adversary’s a priori knowledge.

But a priori knowledge restricted to ground atoms does not allow for modeling
commonly used semantic database constraints such as the well-known classes of
Equality Generating and Tuple Generating Dependencies (cf. [1]). Examples
for achieving inference-proofness under versatile subclasses of these semantic
constraints are given in [6,7] and should be transferred to the current approach.

Moreover, the definition of inference-proofness underlying this work only
guarantees the existence of at least one “secure” alternative instance from an
adversary’s point of view (cf. Theorem 1 and Theorem 2). But in terms of en-
hancing confidentiality it might be desirable to strengthen this definition to
always guarantee a certain number k of different “secure” alternative instances.
As discussed for the generic approach, this can be achieved by increasing the
length of disjunctions (cf. Sect. 3.1). Hence, algorithms constructing availability-
maximizing clusters of size ≥ 3 should be developed on the operational level.

As known from Sect. 3.3, each disjunction of pairwise interchangeable dis-
juncts preserves definite information about all but one position of each ground
atom and generalizes each distorted value to a wider set of possible values.
This idea of generalizing values is similarly used for k-anonymization and `-
diversification [10,16,21]. So, it might be worthwhile to extend our approach
to deal with confidentiality policies already containing disjunctions and to then
model k-anonymization and `-diversification within such an extension.
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